已知條件p:x2-4≤0,條件q:
x+2
x-2
≥0,則¬p是q的(  )
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既非充分也非必要條件
考點(diǎn):必要條件、充分條件與充要條件的判斷
專題:簡易邏輯
分析:求出滿足條件¬p的x的范圍,和滿足條件q的x的范圍,判斷兩個(gè)范圍的包含關(guān)系,進(jìn)而可用集合法判斷出¬p與q的充要關(guān)系.
解答:解:∵條件p:x2-4≤0,
∴條件¬p:x2-4>0,即x∈(-∞,-2)∪(2,+∞);
∵條件q:
x+2
x-2
≥0,即x∈(-∞,-2]∪(2,+∞);
且(-∞,-2)∪(2,+∞)?(-∞,-2]∪(2,+∞);
故¬p是q的充分不必要條件,
故選:A
點(diǎn)評(píng):判斷充要條件的方法是:①若p⇒q為真命題且q⇒p為假命題,則命題p是命題q的充分不必要條件;②若p⇒q為假命題且q⇒p為真命題,則命題p是命題q的必要不充分條件;③若p⇒q為真命題且q⇒p為真命題,則命題p是命題q的充要條件;④若p⇒q為假命題且q⇒p為假命題,則命題p是命題q的即不充分也不必要條件.⑤判斷命題p與命題q所表示的范圍,再根據(jù)“誰大誰必要,誰小誰充分”的原則,判斷命題p與命題q的關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}的前n項(xiàng)和為Sn,已知1≤S2≤2,3≤S4≤5,則S6的取值范圍是(  )
A、[3,12]B、[4,12]C、[5,11]D、[5,8]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列有關(guān)命題的說法正確的是( 。
A、命題“x2=1,則x=1”的否命題為“若x2=1,則x≠1”B、命題“?x∈R,x2+x-1<0”的否定是“?x∈R,x2+x-1>0”C、若“p∨q”為真命題,則p,q至少有一個(gè)為真命題D、命題“若x=y,則sinx=siny”的逆命題為假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式x+
1
x
≥2成立的一個(gè)必要不充分條件是(  )
A、(0,+∞)
B、(0,1)
C、(-1,+∞)
D、(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

sinα=sinβ是α=β的( 。
A、充分不必要條件B、必要不充分條件C、充要條件D、既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,F(xiàn)1、F2是橢圓C1與雙曲線C2
x2
2
-y2=1
的公共焦點(diǎn),A、B分別是C1與C2在第二、四象限的公共點(diǎn).若四邊形AF1BF2為矩形,則C1的離心率是(  )
A、
1
2
B、
2
2
C、
3
2
D、
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線 
x2
a2
-
y2
b2
=1(a>0,b>0)的一條漸近線方程是y=
3
x,它的一個(gè)焦點(diǎn)在拋物線y2=48x的準(zhǔn)線上,則雙曲線的方程為( 。
A、
x2
36
-
y2
108
=1
B、
x2
9
-
y2
27
=1
C、
x2
108
-
y2
36
=1
D、
x2
27
-
y2
9
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=3x2+5,則從0.1到0.2的平均變化率為( 。
A、0.3B、0.6C、0.9D、1.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若復(fù)數(shù)z1=1+2i,z2=1-i,其中i是虛數(shù)單位,則(z1+z2)i在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在( 。
A、第一象限B、第二象限C、第三象限D、第四象限

查看答案和解析>>

同步練習(xí)冊(cè)答案