19.直線y=x+2與圓x2+y2=2的位置關系為(  )
A.相切B.相交但直線不過圓心
C.直線過圓心D.相離

分析 求出圓心點到直線的距離等于半徑,可得直線和圓相切.

解答 解:根據(jù)圓心(0,0)到直線y=x+2的距離為$\frac{2}{\sqrt{2}}$=$\sqrt{2}$,等于半徑$\sqrt{2}$,可得直線和圓相切,
故選:A.

點評 本題主要考查直線和圓的位置關系的判定,點到直線的距離公式的應用,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

9.設地球的半徑為R,在北緯45°緯線圈上有兩點A、B,A在西經(jīng)40°經(jīng)線上,B在東經(jīng)50°經(jīng)線上,求A,B兩點間緯線圈的劣弧長及A,B兩點間球面距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.若函數(shù)f(x)=(1-2a)x在R上是減函數(shù),則實數(shù)a的取值范圍是(0,$\frac{1}{2}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.求值:$(1){e^{ln2}}+lg\frac{1}{100}+{(\sqrt{2014}-2015)^{lg1}}$;
$(2)-{(\frac{8}{27})^{-\frac{2}{3}}}×{(-8)^{\frac{2}{3}}}+|-100{|^{\sqrt{0.25}}}+\root{4}{{{{(3-π)}^4}}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知△ABC的周長為20,且頂點B(-4,0),C(4,0),則頂點A的軌跡方程是( 。
A.$\frac{x^2}{36}+\frac{y^2}{20}$=1(y≠0)B.$\frac{x^2}{20}+\frac{y^2}{36}$=1(y≠0)
C.$\frac{x^2}{6}+\frac{y^2}{20}$=1(y≠0)D.$\frac{x^2}{20}+\frac{y^2}{6}$=1(y≠0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.點A,B,C,D均在同一球面上,且AB,AC,AD兩兩垂直,且AB=1,AC=2,AD=3,則該球的表面積為( 。
A.B.14πC.$\frac{7}{2}π$D.$\frac{{7\sqrt{14}π}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.若函數(shù)f(x)為定義在R上的奇函數(shù),且在(-∞,0)內(nèi)是增函數(shù),又f(2)=0,則不等式xf(x-1)<0的解集為(1,3)∪(-1,0).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.設數(shù)列{an}的前n項和為Sn,且對n∈N*都有Sn=2an+n-4
(1)求證:數(shù)列{an-1}是等比數(shù)列,并求數(shù)列{an}的通項公式;
(2)數(shù)列{bn} 滿足bn=$\frac{1}{(n+1)lo{g}_{2}({a}_{n}-1)}$,(n∈N*)求數(shù)列{bn}的前n項和為Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知$\overrightarrow a=(-3,2,5),\overrightarrow b=(1,5,-1),則\overrightarrow a•\overrightarrow b$=(  )
A.2B.3C.4D.5

查看答案和解析>>

同步練習冊答案