函數(shù)(其中A>0,)的圖象如圖所示,為了得到的圖象,則只需將g(x)=sin2x的圖象

A.向右平移個(gè)長(zhǎng)度單位

B.向左平移個(gè)長(zhǎng)度單位

C.向右平移個(gè)長(zhǎng)度單位

D.向左平移個(gè)長(zhǎng)度單位

 

【答案】

B

【解析】

試題分析:由已知中函數(shù)f(x)=Asin(ωx+φ)的圖象,我們易分析出函數(shù)的周期、最值,進(jìn)而求出函數(shù)f(x)=Asin(ωx+φ)的解析式,設(shè)出平移量a后,根據(jù)平移法則,我們可以構(gòu)造一個(gè)關(guān)于平移量a的方程,解方程即可得到結(jié)論。由已知中函數(shù)f(x)=Asin(ωx+φ)(其中A>0,)的圖象,過(guò)( ,0)點(diǎn),(,-1)點(diǎn),易得:A=1,T=4(-)=π,即ω=2,即f(x)=sin(2x+φ),, 故可知向左平移個(gè)長(zhǎng)度單位,選B.

考點(diǎn):三角函數(shù)的解析式

點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是由函數(shù)f(x)=Asin(ωx+φ)的圖象確定其中解析式,函數(shù)f(x)=Asin(ωx+φ)的圖象變換,其中根據(jù)已知中函數(shù)f(x)=Asin(ωx+φ)的圖象,求出函數(shù)f(x)=Asin(ωx+φ)的解析式,是解答本題的關(guān)鍵

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)ω(其中A>0,ω>0,-π<φ<π )在x=
π
6
處取得最大值2,其圖象與軸的相鄰兩個(gè)交點(diǎn)的距離為
π
2

(I)求f(x)的解析式;
(II)求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年臨沂市質(zhì)檢一文)(14分)已知函數(shù)(其中a>0),且在點(diǎn)(0,0)處的切線與直線平行。

   (1)求c的值;

   (2)設(shè)的兩個(gè)極值點(diǎn),且的取值范圍;

   (3)在(2)的條件下,求b的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年湖南省株洲市醴陵二中高三(上)第一次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知函數(shù)f(x)=log2(4x+1)+kx(k∈R)是偶函數(shù).
(1)求k的值;
(2)設(shè)函數(shù),其中a>0.若函數(shù)f(x)與g(x)的圖象有且只有一個(gè)交點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年重慶七中高三(下)3月月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知函數(shù),其中a>0.
(1)、若x=1是y=f(x)的一個(gè)極值點(diǎn),求曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程;
(2)、若曲線y=f(x)與x軸有3個(gè)不同交點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年北京市西城區(qū)高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

已知函數(shù),其中a>0.
(Ⅰ)若a=2,求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)求f(x)在區(qū)間[2,3]上的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案