【題目】在正方體ABCD﹣A1B1C1D1中,E為棱CD的中點(diǎn),則( 。
A.A1E⊥DC1
B.A1E⊥BD
C.A1E⊥BC1
D.A1E⊥AC
【答案】C
【解析】解:以D為原點(diǎn),DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標(biāo)系,
設(shè)正方體ABCD﹣A1B1C1D1中棱長(zhǎng)為2,
則A1(2,0,2),E(0,1,0),B(2,2,0),D(0,0,0),C1(0,2,2),A(2,0,0),C(0,2,0),
=(﹣2,1,﹣2), =(0,2,2), =(﹣2,﹣2,0),
=(﹣2,0,2), =(﹣2,2,0),
∵ =﹣2, =2, =0, =6,
∴A1E⊥BC1 .
故選:C.
【考點(diǎn)精析】本題主要考查了空間中直線與直線之間的位置關(guān)系的相關(guān)知識(shí)點(diǎn),需要掌握相交直線:同一平面內(nèi),有且只有一個(gè)公共點(diǎn);平行直線:同一平面內(nèi),沒(méi)有公共點(diǎn);異面直線: 不同在任何一個(gè)平面內(nèi),沒(méi)有公共點(diǎn)才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)從某高中隨機(jī)抽取部分高二學(xué)生,調(diào)査其到校所需的時(shí)間(單位:分鐘),并將所得數(shù)據(jù)繪制成頻率分布直方圖(如圖),其中到校所需時(shí)間的范圍是,樣本數(shù)據(jù)分組為.
(1)求直方圖中的值;
(2)如果學(xué)生到校所需時(shí)間不少于1小時(shí),則可申請(qǐng)?jiān)趯W(xué)校住宿.若該校錄取1200名新生,請(qǐng)估計(jì)高二新生中有多少人可以申請(qǐng)住宿;
(3)以直方圖中的頻率作為概率,現(xiàn)從該學(xué)校的高二新生中任選4名學(xué)生,用表示所選4名學(xué)生中“到校所需時(shí)間少于40分鐘”的人數(shù),求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)滿足 (其中a>0,a≠1)
(Ⅰ)求f(x)的表達(dá)式;
(Ⅱ)對(duì)于函數(shù)f(x),當(dāng)x∈(﹣1,1)時(shí),f(1﹣m)+f(1﹣m2)<0,求實(shí)數(shù)m的取值范圍;
(Ⅲ)當(dāng)x∈(﹣∞,2)時(shí),f(x)﹣4的值為負(fù)數(shù),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線C:y2=2x,過(guò)點(diǎn)(2,0)的直線l交C與A,B兩點(diǎn),圓M是以線段AB為直徑的圓.
(Ⅰ)證明:坐標(biāo)原點(diǎn)O在圓M上;
(Ⅱ)設(shè)圓M過(guò)點(diǎn)P(4,﹣2),求直線l與圓M的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC的外接圓O的直徑為AB,CD⊥平面ABC,BE∥CD.
(1)求證:平面ADC⊥平面BCDE;
(2)試問(wèn)在線段DE和BC上是否分別存在點(diǎn)M和F,使得平面OMF∥平面ACD?若存在,確定點(diǎn)M和點(diǎn)F的位置;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓,直線.
(1)求直線所過(guò)定點(diǎn)的坐標(biāo);
(2)求直線被圓所截得的弦長(zhǎng)最短時(shí)的值及最短弦長(zhǎng).
(3)在(2)的前提下,若為直線上的動(dòng)點(diǎn),且圓上存在兩個(gè)不同的點(diǎn)到點(diǎn)的距離為1,求點(diǎn)的橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),正實(shí)數(shù)a,b,c是公差為正數(shù)的等差數(shù)列,且滿足.若實(shí)數(shù)d是方程的一個(gè)解,那么下列三個(gè)判斷:①d<a;②d<b;③d<c中有可能成立的個(gè)數(shù)為( 。
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知三角形的三邊長(zhǎng)是公差為2的等差數(shù)列,且最大角的正弦值為,則這個(gè)三角形的周長(zhǎng)是( )
A. 18 B. 15 C. 21 D. 24
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓上的一動(dòng)點(diǎn)到右焦點(diǎn)的最短距離為,且右焦點(diǎn)到右準(zhǔn)線的距離等于短半軸的長(zhǎng).
(1)求橢圓的方程;
(2)設(shè)是橢圓上關(guān)于軸對(duì)稱的任意兩個(gè)不同的點(diǎn),連接交橢圓于另一點(diǎn),證明直線與軸相交于定點(diǎn);
(3)在(2)的條件下,過(guò)點(diǎn)的直線與橢圓交于兩點(diǎn),求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com