求下列函數(shù)的導(dǎo)函數(shù):
①f(x)=x3+log2x;
②f(x)=
cosx
ex
考點(diǎn):導(dǎo)數(shù)的運(yùn)算
專(zhuān)題:導(dǎo)數(shù)的概念及應(yīng)用
分析:根據(jù)函數(shù)的導(dǎo)數(shù)公式直接進(jìn)行求解即可得到結(jié)論.
解答: 解:①∵f(x)=x3+log2x;
∴f′(x)=3x2+
1
xln2
;
②∵f(x)=
cosx
ex
,
∴f′(x)=
(cosx)′•ex-cosx•(ex)′
(ex)2
=
-sinx-cosx
ex
點(diǎn)評(píng):本題主要考查導(dǎo)數(shù)的計(jì)算,要求熟練掌握常見(jiàn)函數(shù)的導(dǎo)數(shù)公式以及導(dǎo)數(shù)的運(yùn)算法則,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=-
a
2
x2+(a+1)x-lnx(a∈R).
(1)當(dāng)a=0時(shí),求函數(shù)f(x)的極值;
(2)當(dāng)a>0時(shí),討論函數(shù)f(x)的單調(diào)性;
(3)若對(duì)任意a∈(2,3)及任意x1,x2∈[1,2],恒有
a2-1
2
m+ln2>|f(x1)-f(x2)|成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)農(nóng)技站為了考察某種麥穗長(zhǎng)的分布情況,在一塊試驗(yàn)地里抽取了100個(gè)麥穗,量得長(zhǎng)度如下(單位:cm):
6.5 6.4 6.7 5.8 5.9 5.9 5.2 4.0 5.4 4.6
5.8 5.5 6.0 6.5 5.1 6.5 5.3 5.9 5.5 5.8
6.2 5.4 5.0 5.0 6.8 6.0 5.0 5.7 6.0 5.5
6.8 6.0 6.3 5.5 5.0 6.3 5.2 6.0 7.0 6.4
6.4 5.8 5.9 5.7 6.8 6.6 6.0 6.4 5.7 7.4
6.0 5.4 6.5 6.0 6.8 5.8 6.3 6.0 6.3 5.6
5.3 6.4 5.7 6.7 6.2 5.6 6.0 6.7 6.7 6.0
5.6 6.2 6.1 5.3 6.2 6.8 6.6 4.7 5.7 5.7
5.8 5.3 7.0 6.0 6.0 5.9 5.4 6.0 5.2 6.0
6.3 5.7 6.8 6.1 4.5 5.6 6.3 6.0 5.8 6.3
根據(jù)上面的數(shù)據(jù)列出頻率分布表、繪出頻率分布直方圖,并估計(jì)長(zhǎng)度在5.75~6.05cm之間的麥穗在這批麥穗中所占的百分比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(cos
3
2
x,sin
3
2
x),
b
=(cos
x
2
,-sin
x
2
),且x∈[0,
π
2
],
(1)求
a
b
及|
a
+
b
|;
(2)求函數(shù)f(x)=
a
b
-2|
a
+
b
|的最小值;
(3)若f(x)=
a
b
-λ|
a
+
b
|的最小值是-
3
2
,求實(shí)數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sin(2x+
π
6
)+sin(2x-
π
6
)+2cos2x,(x∈R)
(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間;    
(2)求使f(x)≥2的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)y=
x2
x+3
在x=2處的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形ABCD為矩形,且AD=4,AB=2,PA=1,PA⊥平面ABCD,E為線段BC上的動(dòng)點(diǎn).
(1)當(dāng)E為線段BC的中點(diǎn)時(shí),求證:DE⊥平面PAE;
(2)若BE=1,求二面角P-ED-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=lnx-
1
2
ax2-2x+1,a∈R
(Ⅰ)若f(x)在x=2處的切線與直線2x+y=0垂直,求a的值;
(Ⅱ)若f(x)存在單調(diào)遞減區(qū)間,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=-2cosx,x∈[0,2π]的圖象和直線y=-2圍成的一個(gè)封閉的平面圖形的面積是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案