【題目】如圖所示,,分別為橢圓的左,右焦點(diǎn),橢圓上點(diǎn)的橫坐標(biāo)等于右焦點(diǎn)的橫坐標(biāo),其縱坐標(biāo)等于短半軸長(zhǎng)的,則橢圓的離心率為(

A.B.C.D.

【答案】A

【解析】

設(shè)橢圓的長(zhǎng)半軸、短半軸、半焦距長(zhǎng)分別為a、b、c,可得Mc,b),利用勾股定理與橢圓的定義建立關(guān)于a、b、c的等式,化簡(jiǎn)整理得ba,從而得出ca,即可算出該橢圓的離心率.

設(shè)橢圓的長(zhǎng)半軸、短半軸、半焦距長(zhǎng)分別為a、bc,

可得焦點(diǎn)為F1(﹣c0)、F2c,0),點(diǎn)M的坐標(biāo)為(c,b),

RtMF1F2中,F1F2MF2

|F1F2|2+|MF2|2|MF1|2,即4c2b2|MF1|2,

根據(jù)橢圓的定義得|MF1|+|MF2|2a,

可得|MF1|2=(2a|MF2|2=(2ab2,

∴(2ab24c2b2,整理得4c24a2ab,

可得3a2c2)=2ab,所以3b22ab,解得ba

ca,因此可得e,

即該橢圓的離心率等于

故選:A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓Cab0)的離心率為且經(jīng)過(guò)點(diǎn)P2,).

1)求橢圓C的方程;

2)若橢圓C的左右頂點(diǎn)分別為A,B,過(guò)點(diǎn)A斜率為kk≠0)的直線l交橢圓C于點(diǎn)D,交y軸于點(diǎn)E.是否存在定點(diǎn)Q,對(duì)于任意的kk≠0)都有BDEQ,若存在,求AQD的面積的最大值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,動(dòng)點(diǎn)分別與兩個(gè)定點(diǎn),的連線的斜率之積為.

(1)求動(dòng)點(diǎn)的軌跡的方程;

(2)設(shè)過(guò)點(diǎn)的直線與軌跡交于兩點(diǎn),判斷直線與以線段為直徑的圓的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中國(guó)有悠久的金石文化,印信是金石文化的代表之一.印信的形狀多為長(zhǎng)方體、正方體或圓柱體,但南北朝時(shí)期的官員獨(dú)孤信的印信形狀是半正多面體(圖1.半正多面體是由兩種或兩種以上的正多邊形圍成的多面體.半正多面體體現(xiàn)了數(shù)學(xué)的對(duì)稱美.圖2是一個(gè)棱數(shù)為48的半正多面體,它的所有頂點(diǎn)都在同一個(gè)正方體的表面上,且此正方體的棱長(zhǎng)為1.則該半正多面體共有________個(gè)面,其棱長(zhǎng)為_________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù).

(Ⅰ)求的單調(diào)區(qū)間;

(Ⅱ)當(dāng)時(shí),試判斷零點(diǎn)的個(gè)數(shù);

(Ⅲ)當(dāng)時(shí),若對(duì),都有)成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的幾何體中,四邊形是等腰梯形,.在梯形中,,且,,平面

(Ⅰ)求證:

II)求四棱錐與三棱錐體積的比值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)橢圓的左焦點(diǎn)為,上頂點(diǎn)為.已知橢圓的短軸長(zhǎng)為4,離心率為.

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)點(diǎn)在橢圓上,且異于橢圓的上、下頂點(diǎn),點(diǎn)為直線軸的交點(diǎn),點(diǎn)軸的負(fù)半軸上.若為原點(diǎn)),且,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)y=fx)在區(qū)間D上是增函數(shù),且函數(shù)y=在區(qū)間D上是減函數(shù),則稱函數(shù)fx)是區(qū)間D上的“H函數(shù)”.對(duì)于命題:

①函數(shù)fx)=-x+是區(qū)間(0,1)上的“H函數(shù)”;

②函數(shù)gx)=是區(qū)間(0,1)上的“H函數(shù)”.下列判斷正確的是(  )

A. 均為真命題 B. 為真命題,為假命題

C. 為假命題,為真命題 D. 均為假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】李明自主創(chuàng)業(yè),在網(wǎng)上經(jīng)營(yíng)一家水果店,銷售的水果中有草莓、京白梨、西瓜、桃,價(jià)格依次為60/盒、65/盒、80/盒、90/盒.為增加銷量,李明對(duì)這四種水果進(jìn)行促銷:一次購(gòu)買水果的總價(jià)達(dá)到120元,顧客就少付x元.每筆訂單顧客網(wǎng)上支付成功后,李明會(huì)得到支付款的80%

①當(dāng)x=10時(shí),顧客一次購(gòu)買草莓和西瓜各1盒,需要支付__________元;

②在促銷活動(dòng)中,為保證李明每筆訂單得到的金額均不低于促銷前總價(jià)的七折,則x的最大值為__________

查看答案和解析>>

同步練習(xí)冊(cè)答案