已知向量
a
=(1,1)
,向量
b
=(2,x)
,若
a
-
b
a
互直垂直,則實(shí)數(shù)x的值為(  )
A、-2B、0C、1D、2
分析:利用向量的坐標(biāo)運(yùn)算法則求出兩個(gè)向量的差的坐標(biāo),利用向量垂直的坐標(biāo)形式的充要條件,列出方程求出x.
解答:解:∵
a
-
b
=(-1,1-x)

又∵ (
a
-
b
)⊥
a

∴-1×1+1-x=0
解得x=0
故選B
點(diǎn)評(píng):本題考查向量的坐標(biāo)形式的運(yùn)算法則、考查向量垂直的坐標(biāo)形式的充要條件.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(1,1)
b
=(2,3)
,向量λ
a
-
b
垂直于y軸,則實(shí)數(shù)λ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•河南模擬)已知向量
 a 
=(1, 1-cosθ),  
 b 
=(1+cosθ, 
1
2
),且 
 a 
 b 
,則銳角θ等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量ab不共線,實(shí)線x,y滿足向量等式(2x-y)a+4b=5a+(x-2y)b,則x+y的值等于(    )

A.-1                 B.1               C.0                D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量a = (1,1),向量b與向量a 的夾角為,且a?b = -1.

   (1)求向量b;

   (2)若向量bq =(1,0)的夾角為,向量p = ,其中A,C為△ABC的內(nèi)角,且A + C = ,求|b + p |的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量a = (1,1),向量b與向量a 的夾角為,且a?b = -1.

   (1)求向量b;

   (2)若向量bq =(1,0)的夾角為,向量p = ,其中A,C為△ABC的內(nèi)角,且A + C = ,求|b + p |的最小值.

查看答案和解析>>

同步練習(xí)冊答案