分析 (Ⅰ)設(shè)出等差數(shù)列的公差和等比數(shù)列的公比,由已知列式求得等差數(shù)列的公差和等比數(shù)列的公比,則an和bn可求;
(Ⅱ)把等差數(shù)列{an}的通項和前n項和為Sn代入f(n)=$\frac{{a}_{n}-1}{{S}_{n}+100}$,整理后利用基本不等式求得f(n)最大值及相應(yīng)的n的值.
解答 解:(Ⅰ)設(shè)等差數(shù)列{an}的公差為d,等比數(shù)列{bn}的公比為q,則d>0,
∴${a}_{n}=3+(n-1)d,_{n}={q}^{n-1}$,
依題意:$\left\{\begin{array}{l}{_{3}{S}_{3}=(9+3d){q}^{2}=960}\\{_{2}{S}_{2}=(6+d)q=64}\end{array}\right.$,解得$\left\{\begin{array}{l}{d=2}\\{q=8}\end{array}\right.$或$\left\{\begin{array}{l}{d=-\frac{6}{5}}\\{q=\frac{40}{3}}\end{array}\right.$(舍).
∴an=2n+1,$_{n}={8}^{n-1}$;
(Ⅱ)∵Sn=n(n+2),
∴f(n)=$\frac{{a}_{n}-1}{{S}_{n}+100}$=$\frac{2n}{{n}^{2}+2n+100}=\frac{2}{n+\frac{100}{n}+2}$≤$\frac{2}{2\sqrt{n•\frac{100}{n}}+2}=\frac{1}{11}$.
當(dāng)且僅當(dāng)n=$\frac{100}{n}$,即n=10時取等號.
∴當(dāng)n=10時,所求最小值為$\frac{1}{11}$.
點(diǎn)評 本題考查等差數(shù)列與等比數(shù)列的通項公式,考查了數(shù)列的函數(shù)特性,訓(xùn)練了利用基本不等式求最值,是中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(1)>c>f(-1) | B. | f(1)<c<f(-1) | C. | c>f(-1)>f(1) | D. | c<f(-1)<f(1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 直線y=x對稱 | B. | x軸對稱 | C. | y軸對稱 | D. | 原點(diǎn)對稱 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 有最小值2,最大值3 | B. | 有最小值2,無最大值 | ||
C. | 有最大值3,無最小值 | D. | 既無最小值,也無最大值 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com