3.設(shè)x,y滿足$\left\{\begin{array}{l}2x+y≥4\\ x-y≥1\\ x-2y≤2\end{array}\right.$,則z=x+y( 。
A.有最小值2,最大值3B.有最小值2,無最大值
C.有最大值3,無最小值D.既無最小值,也無最大值

分析 畫出x,y滿足的平面區(qū)域,利用y=-x+z的截距的最值求得z 的最值.

解答 解:x,y滿足的平面區(qū)域如圖:
當直線y=-x+z經(jīng)過A時z最小,
經(jīng)過B時z最大,
由$\left\{\begin{array}{l}{2x+y=4}\\{x-2y=2}\end{array}\right.$得到A(2,0)
所以z 的最小值為2+0=2,
由于區(qū)域是開放型的,
所以z 無最大值;
故選B.

點評 本題考查了簡單線性規(guī)劃問題,首先正確畫出平面區(qū)域,利用目標函數(shù)的幾何意義求最值.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

13.設(shè)Sn為數(shù)列{an}的前項和,已知a1≠0,2an-a1=S1•Sn,則數(shù)列{nan}的前n項和為(n-1)×2n+1.n∈N+

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.各項均為正數(shù)的等差數(shù)列{an}前n項和為Sn,首項a1=3,數(shù)列{bn} 為等比數(shù)列,首項b1=1,且b2S2=64,b3S3=960.
(Ⅰ)求an和bn;
(Ⅱ)設(shè)f(n)=$\frac{{a}_{n}-1}{{S}_{n}+100}$(n∈N*),求f(n)最大值及相應(yīng)的n的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知集合A={y|y=log2x,x≥4},B={y|y=($\frac{1}{2}$)x,-1≤x≤0}.
(1)求A∩B;
(2)若集合C={x|a≤x≤2a-1},且C∪B=B,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知集合A={x|$\frac{1}{3}$≤($\frac{1}{3}$)x-1≤9},集合B={x|log2x<3},集合C={x|x2-(2a+1)x+a2+a≤0},U=R
(1)求集合A∩B,(∁UB)∪A;
(2)若A∪C=A,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知$\overrightarrow{m}$=(3,a-1),$\overrightarrow{n}$=(a,-2),若$\overrightarrow{m}$⊥$\overrightarrow{n}$,則a的值為( 。
A.$\frac{2}{5}$B.2C.-2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.若f(x)=$\frac{x^2-1}{\sqrt{x+1}}$,g(x)=$\frac{\sqrt{x+1}}{x-1}$,則f(x)•g(x)=x+1(x>-1且x≠1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.函數(shù)f(x)=x2(x∈R)是( 。
A.奇函數(shù)B.偶函數(shù)
C.非奇非偶函數(shù)D.奇函數(shù)同時也是偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.將函數(shù)y=sin(2x+$\frac{π}{4}$)的圖象上各點的縱坐標不變,橫坐標伸長到原來的2倍,再向左平移$\frac{π}{4}$個單位,所得到的圖象解析式是(  )
A.f(x)=sinxB.f(x)=cosxC.f(x)=-sin(4x+$\frac{π}{4}$)D.f(x)=sin(4x+$\frac{π}{4}$)

查看答案和解析>>

同步練習冊答案