在△ABC中,角ABC的對邊分別為a、b、c,若,則角B的值為( )
A.
B.
C.
D.
【答案】分析:通過余弦定理及,求的sinB的值,又因在三角形內(nèi),進而求出B.
解答:解:由
,即
,又在△中所以B為
故選D
點評:本題主要考查余弦定理及三角中的切化弦.很多人會考慮對于角B的取舍問題,而此題兩種都可以,因為我們的過程是恒等變形.條件中也沒有其它的限制條件,所以有的同學就多慮了.雖然此題沒有涉及到取舍問題,但在平時的練習過程中一定要注意此點
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A、B、C所對的邊分別為a、b、c,且c2=a2+b2-ab.
(Ⅰ)若tanA-tanB=
3
3
(1+tanA•tanB)
,求角B;
(Ⅱ)設
m
=(sinA,1)
,
n
=(3,cos2A)
,試求
m
n
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A,B,C所對應的邊分別為a,b,c,已知cosC=-
1
4

(Ⅰ)求sin
C
2
的值;
(Ⅱ)若ab=6,且sin2A+sin2B=
13
16
sin2C,求a,b,c的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A,B,C所對邊分別為a,b,c,且向量
m
=(sinA,sinB),
n
=(cosB,cosA),滿足
m
n
=sin2C.
(1)求角C的大小;
(2)若sinA,sinC,sinB成等差數(shù)列,且
AC
•(
AC
-
AB
)=18
,求邊c的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A,B,C對的邊分別為a,b,c,且c=2,C=60°.
(1)求
a+bsinA+sinB
的值;
(2)若a+b=ab,求△ABC的面積S△ABC

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A,B,C所對應的邊分別為a,b,c,若實數(shù)λ,μ滿足a+b=λc,ab=μc2,則稱數(shù)對(λ,μ)為△ABC的“Hold對”,現(xiàn)給出下列四個命題:
①若△ABC的“Hold對”為(2,1),則△ABC為正三角形;
②若△ABC的“Hold對”為(2,
8
9
)
,則△ABC為銳角三角形;
③若△ABC的“Hold對”為(
7
6
,
1
3
)
,則△ABC為鈍角三角形;
④若△ABC是以C為直角頂點的直角三角形,則以“Hold對”(λ,μ)為坐標的點構成的圖形是矩形,其面積為
2
-1
2

其中正確的命題是
①③
①③
(填上所有正確命題的序號).

查看答案和解析>>

同步練習冊答案