(1)計(jì)算:2log32-log3
32
9
+10g 
1
3
1
8
-5 log59
(2)解不等式:log2(2x+1)+2>log2(3-x)
考點(diǎn):指、對(duì)數(shù)不等式的解法,對(duì)數(shù)的運(yùn)算性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)由指數(shù)和對(duì)數(shù)的運(yùn)算法則計(jì)算可得;
(2)原不等式可化為log2(8x+4)>log2(3-x),進(jìn)而可得
8x+4>0
3-x>0
8x+4>3-x
,解不等式組可得.
解答: 解:(1)2log32-log3
32
9
+10g 
1
3
1
8
-5 log59
=2log32-log332+log39+10g38-9
=2log32-5log32+2+30g32-9
=27g32-7
(2)原不等式可化為log2(2x+1)+log222>log2(3-x)
整理可得log2(8x+4)>log2(3-x),
8x+4>0
3-x>0
8x+4>3-x
,解得
1
9
<x<3
點(diǎn)評(píng):本題考查指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的性質(zhì),屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

二次函數(shù)f(x)=2x2-3x+1.
(1)寫(xiě)出它的單調(diào)區(qū)間;
(2)求函數(shù)f(x)在區(qū)間[0,2]上的最大值及最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)化簡(jiǎn):(2a
1
4
b
1
3
)(-3a -
1
2
b 
2
3
)÷(-
1
4
a -
1
4
b -
2
3

(2)求值:(log43+log83)(log32+log92)-log 
1
2
432

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|a-1<x<2a+1},B為函數(shù)f(x)=lg(x-x2)的定義域,若A∩B=∅,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(Ⅰ)某同學(xué)在一次研究性學(xué)習(xí)中發(fā)現(xiàn),以下五個(gè)式子的值都等于一個(gè)常數(shù).
sin213°+cos217°-sin13°cos17°,sin215°+cos215°-sin15°cos15°,sin218°+cos212°-sin18°cos12°,sin2(-18°)+cos248°-sin(-18°)cos48°,sin2(-25°)+cos255°-sin(-25°)cos55°.
(1)試從上述五個(gè)式子中選擇一個(gè),求出這個(gè)常數(shù).
(2)根據(jù)(1)的計(jì)算結(jié)果,將該同學(xué)的發(fā)現(xiàn)推廣為三角恒等式,并證明你的結(jié)論.
(Ⅱ)求函數(shù)y=2+2sinxcosx+sinx+cosx,x∈[-
π
2
,
π
2
]的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(文科)已知二元一次不等式組
x-y+1≤0
y≤4
x≥0

(1)在圖中畫(huà)出不等式組表示的平面區(qū)域.
(2)求所表示的平面區(qū)域的面積
(3)若z=2x+y,求z的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2+4x.
(1)當(dāng)a<-2時(shí),函數(shù)f(x)在區(qū)間[a,a+4]上的最大值與最小值的差為9,求a的值;
(2)若函數(shù)f(x)滿足:對(duì)于任意在區(qū)間D上的實(shí)數(shù)x都有f(x+1)>mf(x),則稱函數(shù)f(x)為區(qū)間D上周期為1的m倍遞增函數(shù).已知函數(shù)f(x)為區(qū)間[0,4]上是周期為1的m倍遞增函數(shù),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=lnx-ax+
2
x
(a∈R).
(Ⅰ)當(dāng)a=1時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)若函數(shù)y=f(x)在定義域內(nèi)是減函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線
x2
a2
-
y2
9
=1的一個(gè)焦點(diǎn)與拋物線y2=20x的焦點(diǎn)重合,則該雙曲線的離心率為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案