設(shè)A:x(x-1)<0,B:0<x<m若B是A成立的必要不充分條件,則m取值范圍為________.

m>1
分析:先解不等式x(x-1)<0得0<x<1,據(jù)B是A成立的必要不充分條件知,集0<x<1是集0<x<m的真子集.
解答:解:由x(x-1)<0得0<x<1,
∵B是A成立的必要不充分條件,
∴集0<x<1是集0<x<m的真子集.
由數(shù)軸可知,m>1.
故答案為:m>1
點評:本題易錯誤地填:m≥1,錯就錯在對于B是A成立的必要不充分條件的理解,若m=1,則B是A成立的必要
又充分條件了,這是不符合題意的.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

9、設(shè)A:x(x-1)<0,B:0<x<m若B是A成立的必要不充分條件,則m取值范圍為
m>1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合M={x|0≤x<3},N={x|x2-3x-4<0},則集合M∩N等于(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•濰坊一模)設(shè)函數(shù)f(x)=
1
3
mx3+(4+m)x2,g(x)=alnx
,其中a≠0.
( I )若函數(shù)y=g(x)圖象恒過定點P,且點P在y=f(x)的圖象上,求m的值;
(Ⅱ)當(dāng)a=8時,設(shè)F(x)=f′(x)+g(x),討論F(x)的單調(diào)性;
(Ⅲ)在(I)的條件下,設(shè)G(x)=
f(x),x≤1
g(x),x>1
,曲線y=G(x)上是否存在兩點P、Q,使△OPQ(O為原點)是以O(shè)為直角頂點的直角三角形,且該三角形斜邊的中點在y軸上?如果存在,求a的取值范圍;如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

1、設(shè)集合M={x|-1≤x≤1},N={y|y=2x,-1≤x≤1},則集合M∩N=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x-lnx(x>0),則yf(x)                               (  )

A.在區(qū)間(,1),(1,e)內(nèi)均有零點

B.在區(qū)間(,1),(1,e)內(nèi)均無零點

C.在區(qū)間(,1)內(nèi)有零點,在區(qū)間(1,e)內(nèi)無零點

D.在區(qū)間(,1)內(nèi)無零點,在區(qū)間(1,e)內(nèi)有零點

查看答案和解析>>

同步練習(xí)冊答案