分析 (1)去掉絕對(duì)值符號(hào),利用函數(shù)的單調(diào)性求解函數(shù)的最小值.
(2)通過(guò)函數(shù)的最小值的表達(dá)式,利用基本不等式求解函數(shù)的最小值即可.
解答 解:(1)∵$f(x)=\left\{{\begin{array}{l}{-3x-m+n,x≤-m}\\{-x+m+n,-m<x<\frac{n}{2}}\\{3x+m-n,x≥\frac{n}{2}}\end{array}}\right.$,
∴f(x)在$(-∞,\frac{n}{2})$是減函數(shù),在$(\frac{n}{2},+∞)$是增函數(shù).
∴當(dāng)$x=\frac{n}{2}$時(shí),f(x)取最小值$f(\frac{n}{2})=m+\frac{n}{2}$. ….(5分)
(2)由(1)知,f(x)的最小值為$m+\frac{n}{2}$,∴$m+\frac{n}{2}=2$.∵m,n∈R+,
${m}^{2}+\frac{{n}^{2}}{4}=\frac{1}{2}•2({m}^{2}+\frac{{n}^{2}}{4})≥\frac{1}{2}(m+\frac{n}{2})^{2}$=2.
當(dāng)且僅當(dāng)$m=\frac{n}{2}$,即m=1,n=2時(shí),取等號(hào),
∴m2+$\frac{n^2}{4}$的最小值為2. …(10分)
點(diǎn)評(píng) 本題考查絕對(duì)值的化簡(jiǎn)求解,函數(shù)的最值的求法,基本不等式的應(yīng)用,考查轉(zhuǎn)化思想以及計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a>b>c | B. | b>a>c | C. | c>a>b | D. | b>c>a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,2$\sqrt{2}$) | B. | [2$\sqrt{2}$,+∞) | C. | [-2$\sqrt{2}$,2$\sqrt{2}$] | D. | (-∞,-2$\sqrt{2}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,-8) | B. | (-∞,-8] | C. | (-∞,-6) | D. | (-∞,-6] |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com