17.化簡$\frac{cos(\frac{π}{2}+α)sin(π-α)}{cos(\frac{11}{2}-α)sin(\frac{9π}{2}+α)}$.

分析 直接利用三角函數(shù)的誘導(dǎo)公式化簡求解即可.

解答 解:$\frac{cos(\frac{π}{2}+α)sin(π-α)}{cos(\frac{11π}{2}-α)sin(\frac{9π}{2}+α)}$=$\frac{-sinα•sinα}{-sinα•cosα}=tanα$.

點(diǎn)評 本題考查三角函數(shù)的化簡求值,考查三角函數(shù)的誘導(dǎo)公式的應(yīng)用,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知命題p:?x,y∈Z,x2+y2=2015,則?p為( 。
A.?x,y∈Z,x2+y2≠2015B.?x,y∈Z,x2+y2≠2015
C.?x,y∈Z,x2+y2=2015D.不存在x,y∈Z,x2+y2=2015

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)f(x)=lnx,f'(x)是f(x)的導(dǎo)數(shù),若$g(x)=f(x)-\frac{2}{f'(x)}-a$有兩個(gè)不相同的零點(diǎn),則實(shí)數(shù)a的取值范圍是(-∞,ln$\frac{1}{2}$-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知雙曲線過點(diǎn)(2,$\sqrt{3}$),且一條漸近線方程為y=$\frac{1}{2}$x,則該曲線的標(biāo)準(zhǔn)方程為( 。
A.$\frac{{x}^{2}}{8}$-$\frac{{y}^{2}}{2}$=1B.$\frac{{y}^{2}}{2}$-$\frac{{x}^{2}}{8}$=1C.$\frac{{x}^{2}}{4}$-y2=1D.y2-$\frac{{x}^{2}}{4}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知數(shù)列{an}的前n項(xiàng)和Sn滿足an+1=2Sn+6,且a1=6.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{$\frac{1}{{a}_{n}}$}的前n項(xiàng)和為Tn,證明:$\frac{1}{3•{T}_{1}}$+$\frac{1}{{3}^{2}•{T}_{2}}$+$\frac{1}{{3}^{3}•{T}_{3}}$+…+$\frac{1}{{3}^{n}•{T}_{n}}$<3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.某球星在三分球大賽中命中率為$\frac{1}{2}$,假設(shè)三分球大賽中總計(jì)投出8球,投中一球得3分,投丟一球扣一分,則該球星得分的期望與方差分別為( 。
A.16,32B.8,32C.8,8D.32,32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知m>0,n>0,f(x)=|x+m|+|2x-n|.
(1)求f(x)的最小值;
(2)若f(x)的最小值為2,求m2+$\frac{n^2}{4}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.某企業(yè)生產(chǎn)一種產(chǎn)品.日銷售量x(x∈N*,x≤40)(百件)與產(chǎn)品銷售價(jià)格p(萬元/百件)之間的關(guān)系為p(x)=32-$\frac{16x}{x+2}$,已知生產(chǎn)x(百件)該產(chǎn)品所需的成本C(x)=17x-10(萬元) 
(1)把該產(chǎn)品每天的利潤f(x)表示成日產(chǎn)量x的函數(shù):
(2)求當(dāng)日產(chǎn)量為多少時(shí),生產(chǎn)該產(chǎn)品每天獲得的利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知點(diǎn)$M({-6,3\sqrt{5}})$在雙曲線$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的漸近線上,C的焦距為12,則C的方程為(  )
A.$\frac{x^2}{8}-\frac{y^2}{10}=1$B.$\frac{x^2}{10}-\frac{y^2}{8}=1$C.$\frac{x^2}{16}-\frac{y^2}{20}=1$D.$\frac{x^2}{20}-\frac{y^2}{16}=1$

查看答案和解析>>

同步練習(xí)冊答案