如圖,圓F:(x-1)2+y2=1和拋物線,過(guò)F的直線與拋物線和圓依次交于A、B、C、D四點(diǎn),求|AB|•|CD|的值是( )

A.1
B.2
C.3
D.無(wú)法確定
【答案】分析:可分兩類討論,若直線的斜率不存在,則直線方程為x=1,代入拋物線方程和圓的方程,可直接得到ABCD四個(gè)點(diǎn)的坐標(biāo),從而|AB||CD|=1.
若直線的斜率存在,設(shè)為直線方程為y=k(x-1),不妨設(shè)A(x1,y1),B(x2,y2),過(guò)AB分別作拋物線準(zhǔn)線的垂線,由拋物線的定義,|AF|=x1+1,|DF|=x2+1,把直線方程與拋物線方程聯(lián)立,消去y可得k2x2-(2k2+4)x+k2=0,利用韋達(dá)定理及|AB|=|AF|-|BF|=x1,|CD|=|DF|-|CF|=x2,可求|AB||CD|的值.
解答:解:若直線的斜率不存在,則直線方程為x=1,代入拋物線方程和圓的方程,可直接得到ABCD四個(gè)點(diǎn)的坐標(biāo)為(1,2)(1,1)(1,-1)(1,-2),所以|AB|=1,|CD|=1,從而|AB||CD|=1.
若直線的斜率存在,設(shè)為k,因?yàn)橹本過(guò)拋物線的焦點(diǎn)(1,0),則直線方程為y=k(x-1),
不妨設(shè)A(x1,y1),B(x2,y2),過(guò)AB分別作拋物線準(zhǔn)線的垂線,由拋物線的定義,|AF|=x1+1,|DF|=x2+1,
把直線方程與拋物線方程聯(lián)立,消去y可得k2x2-(2k2+4)x+k2=0,由韋達(dá)定理有 x1x2=1
而拋物線的焦點(diǎn)F同時(shí)是已知圓的圓心,所以|BF|=|CF|=R=1
從而有|AB|=|AF|-|BF|=x1,|CD|=|DF|-|CF|=x2
所以|AB||CD|=x1x2=1
故選A.
點(diǎn)評(píng):本題考查圓與拋物線的綜合,考查分類討論的數(shù)學(xué)思想,考查拋物線的定義,綜合性強(qiáng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,圓A的方程為:(x+3)2+y2=100,定點(diǎn)B(3,0),動(dòng)點(diǎn)P為圓A上的任意一點(diǎn).線段BP的垂直平分線和半徑AP相交于點(diǎn)Q,當(dāng)點(diǎn)P在圓A上運(yùn)動(dòng)時(shí),
(1)求|QA|+|QB|的值,并求動(dòng)點(diǎn)Q的軌跡方程;
(2)設(shè)Q點(diǎn)的橫坐標(biāo)為x,記PQ的長(zhǎng)度為f(x),求函數(shù)f (x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,已知圓C:(x+1)2+y2=8,定點(diǎn)A(1,0),M為圓C上一動(dòng)點(diǎn),點(diǎn)P在線段AM上,點(diǎn)N在線段CM上,且滿足
AM
=2
AP
,
NP
AM
=0
,點(diǎn)N的軌跡為曲線E.
(1)求曲線E的方程;
(2)若過(guò)定點(diǎn)F(0,2)的直線交曲線E于不同的兩點(diǎn)G、H(點(diǎn)G在點(diǎn)F、H之間),且滿足
FG
FH
,求λ
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,圓F:(x-1)2+y2=1和拋物線x=
y2
4
,過(guò)F的直線與拋物線和圓依次交于A、B、C、D四點(diǎn),求|AB|•|CD|的值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,點(diǎn)F是橢圓W:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點(diǎn),A、B分別是橢圓的右頂點(diǎn)與上頂點(diǎn),橢圓的離心率為
1
2
,三角形ABF的面積為
3
3
2
,
(Ⅰ)求橢圓W的方程;
(Ⅱ)對(duì)于x軸上的點(diǎn)P(t,0),橢圓W上存在點(diǎn)Q,使得PQ⊥AQ,求實(shí)數(shù)t的取值范圍;
(Ⅲ)直線l:y=kx+m(k≠0)與橢圓W交于不同的兩點(diǎn)M、N (M、N異于橢圓的左右頂點(diǎn)),若以MN為直徑的圓過(guò)橢圓W的右頂點(diǎn)A,求證:直線l過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案