4.設(shè)x>1,y>1,且滿足log7(x+y)=log7x+log7y,則log7(x-1)+log7(y-1)的值等于( 。
A.7B.1C.log72D.0

分析 由已知結(jié)合對(duì)數(shù)的運(yùn)算性質(zhì),可得x+y=xy,進(jìn)而可得log7(x-1)+log7(y-1)的值.

解答 解:∵x>1,y>1,且滿足log7(x+y)=log7x+log7y=log7(xy),
∴x+y=xy,
∴l(xiāng)og7(x-1)+log7(y-1)=log7[(x-1)(y-1)]=log7[xy-(x+y)+1]=log71=0,
故選:D

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是對(duì)數(shù)的運(yùn)算性質(zhì),函數(shù)求值,根據(jù)已知得到x+y=xy,是解答的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)f(x)=sin2x.
(1)求f(x)的最小正周期:
(2)求f(x)在區(qū)間[-$\frac{π}{6}$,$\frac{π}{2}$]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知數(shù)列{an}滿足a1=1,a2=2,且$\frac{{a}_{n-1}-{a}_{n}}{{a}_{n-1}}$=$\frac{{a}_{n}-{a}_{n+1}}{{a}_{n}}$(n≥2),則數(shù)列{an}的前4項(xiàng)和等于( 。
A.18B.8C.15D.17

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.一個(gè)幾何體的三視圖如圖所示,則幾何體的體積是(  )
A.$\frac{7π}{6}$B.$\frac{5π}{6}$C.$\frac{5π}{3}$D.$\frac{4π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.設(shè)f(x)=$\frac{{e}^{|x|}+x+1}{{e}^{|x|}+1}$在區(qū)間[-m,m](m>0)上的最大值為p,最小值為q,則p+q=( 。
A.4B.3.5C.3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知f(x)=5sin(2ωx-$\frac{π}{3}$)(ω>0)的最小正周期為π.
(1)求ω;
(2)求x∈[0,π]時(shí),函數(shù)f(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的漸近線與實(shí)軸的夾角為30°,則雙曲線的離心率為( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{2\sqrt{3}}{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知向量$\vec a$,$\vec b$滿足$\vec a$=$(-2sinx,\sqrt{3}(cosx+sinx))$,$\vec b$=(cosx,cosx-sinx),函數(shù)f(x)=$\vec a$•$\vec b$(x∈R).
(Ⅰ)將f(x)化成Asin(ωx+ϕ)(A>0,ω>0,|ϕ|<π)的形式;
(Ⅱ)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(Ⅲ) 求函數(shù)f(x)在$x∈[0,\frac{π}{2}]$的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.若“?x∈[0,$\frac{π}{4}$],m≥tanx”是真命題,則實(shí)數(shù)m的取值范圍是[1,+∞).

查看答案和解析>>

同步練習(xí)冊(cè)答案