已知函數(shù)f(x)=
|lgx|,0<x≤10
-
1
2
x+6,x>10

(1)若a<b<10,且f(a)=f(b),求ab的值;
(2)方程f(x)=k,k為常數(shù),若方程有三解,求k的范圍.
考點(diǎn):分段函數(shù)的應(yīng)用
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)作出函數(shù)f(x)的圖象,結(jié)合對(duì)數(shù)的運(yùn)算法則和運(yùn)算性質(zhì)即可求ab的值;
(2)利用數(shù)形結(jié)合即可得到結(jié)論.
解答: 解:(1)作出函數(shù)f(x)的圖象如圖:
∵f(a)=f(b),
∴0<a<1<b,
即lga<0,lgb>0,且-lga=lgb,
即ab=1.
(2)∵f(10)=1,∴當(dāng)k=1時(shí),方程f(x)=k有兩個(gè)根,
要使方程有三解,
由f(x)圖象可得0<k<1.
點(diǎn)評(píng):本題主要考分段函數(shù)的圖象和應(yīng)用,根據(jù)對(duì)數(shù)函數(shù)的性質(zhì)是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(
3
,cosωx),
b
=(sinωx,-1),(0<ω<3,x∈R).函數(shù)f(x)=
a
b
,若將函數(shù)f(x)的圖象向左平移
π
3
個(gè)單位,則得到y(tǒng)=g(x)的圖象,且函數(shù)y=g(x)為偶函數(shù).
(Ⅰ)求函數(shù)f(x)的解析式及其單調(diào)增區(qū)間;
(Ⅱ)若f(
α
2
)=
1
2
,(
π
6
<α<
2
3
π)
,求sinα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某房地產(chǎn)公司計(jì)劃出租70套相同的公寓房.當(dāng)每套房月租金定為3000元時(shí),這70套公寓能全租出去;當(dāng)月租金每增加50元時(shí)(設(shè)月租金均為50元的整數(shù)倍),就會(huì)多一套房子不能出租.設(shè)租出的每套房子每月需要公司花費(fèi)100元的日常維修等費(fèi)用(設(shè)租不出的房子不需要花這些費(fèi)用).要使公司獲得最大利潤,每套房月租金應(yīng)定為(  )
A、3000B、3300
C、3500D、4000

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某車間共有6名工人,他們某日加工零件葛素的莖葉圖如圖所示,其中莖為十位數(shù),葉為個(gè)位數(shù)日加工零件大于樣本均值的工人為優(yōu)秀工人,從該車間6名工人中,任取2人,則恰由1名優(yōu)秀工人的概率為( 。
A、
1
9
B、
1
3
C、
3
5
D、
4
9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)的定義域和值域均為區(qū)間G,則稱區(qū)間G為函數(shù)f(x)的“管控區(qū)間”.
(1)求函數(shù)f(x)=x2-2x形如[a,+∞)(a∈R)的“管控區(qū)間”;
(2)函數(shù)g(x)=|1-
1
x
|(x>0)是否存在形如[a,b]的“管控區(qū)間”,若存在,求出實(shí)數(shù)a、b的值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)p在[0,5]上隨機(jī)地取值,則關(guān)于x的方程x2+px+1=0有實(shí)數(shù)根的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知為f(x)奇函數(shù),在[3,6]上是增函數(shù),[3,6]上的最大值為8,最小值為-1,則2f(-6)+f(-3)等于( 。
A、-15B、-13C、-5D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y=0.5|1-x|+m+1有零點(diǎn),則m的取值范圍是(  )
A、m≤-1
B、m≥-2
C、-2<m≤-1
D、-2≤m<-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

sin47°cos17°-cos47°cos73°=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案