已知橢圓:的離心率為,過橢圓右焦點的直線與橢圓交于點(點在第一象限).
(1)求橢圓的方程;
(2)已知為橢圓的左頂點,平行于的直線與橢圓相交于兩點.判斷直線是否關(guān)于直線對稱,并說明理由.

(1);(2)對稱.

解析試題分析:(1)由圓方程可知圓心為,即,又因為離心率為,可得,根據(jù)橢圓中關(guān)系式,可求,橢圓方程即可寫出;(2)由橢圓方程可知,將代入橢圓方程可得,可得,設(shè)直線,設(shè),,然后和橢圓方程聯(lián)立,消掉(或)得到關(guān)于的一元二次方程,再根據(jù)韋達(dá)定理得出根與系數(shù)的關(guān)系,可得兩直線的斜率.若直線是關(guān)于直線對稱時兩直線傾斜角互補(bǔ),所以斜率互為相反數(shù),把求得的兩直線斜率相加若為0,則說明兩直線對稱,否則不對稱.
試題解析:(1)由題意得, 由可得,  所以 
所以橢圓的方程為.             4分
(2)由題意可得點 
所以由題意可設(shè)直線,
設(shè)

由題意可得,即
                         6分
因為                    8分

,                         10分
所以直線關(guān)于直線對稱          12分.
考點:1.橢圓的基礎(chǔ)知識;2.直線與橢圓的位置關(guān)系;3.二次方程根與系數(shù)的關(guān)系.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線,直線,是拋物線的焦點。

(1)在拋物線上求一點,使點到直線的距離最;
(2)如圖,過點作直線交拋物線于A、B兩點.
①若直線AB的傾斜角為,求弦AB的長度;
②若直線AO、BO分別交直線兩點,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)橢圓的左、右焦點分別、,點是橢圓短軸的一個端點,且焦距為6,的周長為16.
(I)求橢圓的方程;
(2)求過點且斜率為的直線被橢圓所截的線段的中點坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓 ,若橢圓的右頂點為圓的圓心,離心率為
(1)求橢圓C的方程;
(2)若存在直線,使得直線與橢圓分別交于兩點,與圓分別交于兩點,點在線段上,且,求圓的半徑的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的焦點在軸上,離心率為,對稱軸為坐標(biāo)軸,且經(jīng)過點
(1)求橢圓的方程;
(2)直線與橢圓相交于兩點, 為原點,在、上分別存在異于點的點、,使得在以為直徑的圓外,求直線斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

橢圓以雙曲線的實軸為短軸、虛軸為長軸,且與拋物線交于兩點.
(1)求橢圓的方程及線段的長;
(2)在圖像的公共區(qū)域內(nèi),是否存在一點,使得的弦的弦相互垂直平分于點?若存在,求點坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,橢圓的中心在原點O,右焦點F在x軸上,橢圓與y軸交于A、B兩點,其右準(zhǔn)線l與x軸交于T點,直線BF交橢圓于C點,P為橢圓上弧AC上的一點.

(1)求證:A、C、T三點共線;
(2)如果=3,四邊形APCB的面積最大值為,求此時橢圓的方程和P點坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓C的方程為=1(a>b>0),雙曲線=1的兩條漸近線為l1、l2,過橢圓C的右焦點F作直線l,使l⊥l1.又l與l2交于P點,設(shè)l與橢圓C的兩個交點由上至下依次為A、B(如圖).

(1)當(dāng)l1與l2夾角為60°,雙曲線的焦距為4時,求橢圓C的方程;
(2)當(dāng)=λ,求λ的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知雙曲線=1的離心率為2,焦點到漸近線的距離等于,過右焦點F2的直線l交雙曲線于A、B兩點,F(xiàn)1為左焦點.
(1)求雙曲線的方程;
(2)若△F1AB的面積等于6,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊答案