已知圓 ,若橢圓的右頂點(diǎn)為圓的圓心,離心率為.
(1)求橢圓C的方程;
(2)若存在直線,使得直線與橢圓分別交于兩點(diǎn),與圓分別交于兩點(diǎn),點(diǎn)在線段上,且,求圓的半徑的取值范圍.
(1) (2)
解析試題分析:,
(1)從圓的標(biāo)準(zhǔn)方程得到圓心的坐標(biāo)即為橢圓的右頂點(diǎn),即可得到a值,再由橢圓離心率、a值結(jié)合、abc之間的關(guān)系可得到b值,即得到橢圓的標(biāo)準(zhǔn)方程
(2)聯(lián)立直線與橢圓方程并利用弦長公式可用斜率k表示弦長|AB|,|GH|.由對(duì)稱性得到|AB|=|GH|,得到r關(guān)于k的表達(dá)式,再根據(jù)表達(dá)式可以利用函數(shù)值域求法中的換元法解得r的取值范圍.
試題解析:
(1)設(shè)橢圓的焦距為2C,因?yàn)閍=,,,所以橢圓C的方程為.
(2)設(shè)A,聯(lián)立直線與橢圓方程得,則,又因?yàn)辄c(diǎn)M()到直線l的距離d=。所以,顯然若點(diǎn)H也在直線AB上,則由對(duì)稱性可知,直線y=kx就是y軸與已知矛盾,所以要使得|AG|=|BH|,只要|AB|=|GH|,所以,
當(dāng)k=0時(shí),,當(dāng)k時(shí), ,由于,綜上.
考點(diǎn):橢圓方程極其性質(zhì) 弦長
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓(a>b>0)的離心率為,且過點(diǎn)().
(1)求橢圓E的方程;
(2)設(shè)直線l:y=kx+t與圓(1<R<2)相切于點(diǎn)A,且l與橢圓E只有一個(gè)公共點(diǎn)B.
①求證:;
②當(dāng)R為何值時(shí),取得最大值?并求出最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
橢圓的方程為,離心率為,且短軸一端點(diǎn)和兩焦點(diǎn)構(gòu)成的三角形面積為1,拋物線的方程為,拋物線的焦點(diǎn)F與橢圓的一個(gè)頂點(diǎn)重合.
(1)求橢圓和拋物線的方程;
(2)過點(diǎn)F的直線交拋物線于不同兩點(diǎn)A,B,交y軸于點(diǎn)N,已知的值.
(3)直線交橢圓于不同兩點(diǎn)P,Q,P,Q在x軸上的射影分別為P′,Q′,滿足(O為原點(diǎn)),若點(diǎn)S滿足,判定點(diǎn)S是否在橢圓上,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,橢圓 (a>b>0)的上、下頂點(diǎn)分別為A、B,已知點(diǎn)B在直線l:上,且橢圓的離心率e =.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)P是橢圓上異于A、B的任意一點(diǎn),PQ⊥y軸,Q為垂足,M為線段PQ中點(diǎn),直線AM交直線l于點(diǎn)C,N為線段BC的中點(diǎn),求證:OM⊥MN.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
的內(nèi)切圓與三邊的切點(diǎn)分別為,已知,內(nèi)切圓圓心,設(shè)點(diǎn)A的軌跡為R.
(1)求R的方程;
(2)過點(diǎn)C的動(dòng)直線m交曲線R于不同的兩點(diǎn)M,N,問在x軸上是否存在一定點(diǎn)Q(Q不與C重合),使恒成立,若求出Q點(diǎn)的坐標(biāo),若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
給定橢圓:,稱圓心在原點(diǎn),半徑為的圓是橢圓的“準(zhǔn)圓”.若橢圓的一個(gè)焦點(diǎn)為,其短軸上的一個(gè)端點(diǎn)到的距離為.
(1)求橢圓的方程和其“準(zhǔn)圓”方程;
(2)點(diǎn)是橢圓的“準(zhǔn)圓”上的動(dòng)點(diǎn),過點(diǎn)作橢圓的切線交“準(zhǔn)圓”于點(diǎn).
(。┊(dāng)點(diǎn)為“準(zhǔn)圓”與軸正半軸的交點(diǎn)時(shí),求直線的方程并證明;
(ⅱ)求證:線段的長為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓:的離心率為,過橢圓右焦點(diǎn)的直線與橢圓交于點(diǎn)(點(diǎn)在第一象限).
(1)求橢圓的方程;
(2)已知為橢圓的左頂點(diǎn),平行于的直線與橢圓相交于兩點(diǎn).判斷直線是否關(guān)于直線對(duì)稱,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,橢圓E:=1(a>b>0)的左焦點(diǎn)為F1,右焦點(diǎn)為F2,離心率e=.過F1的直線交橢圓于A、B兩點(diǎn),且△ABF2的周長為8.
(1)求橢圓E的方程;
(2)設(shè)動(dòng)直線l:y=kx+m與橢圓E有且只有一個(gè)公共點(diǎn)P,且與直線x=4相交于點(diǎn)Q.試探究:在坐標(biāo)平面內(nèi)是否存在定點(diǎn)M,使得以PQ為直徑的圓恒過點(diǎn)M?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系xoy中,以點(diǎn)P為圓心的圓與圓x2+y2-2y=0外切且與x軸相切(兩切點(diǎn)不重合).
(1)求動(dòng)點(diǎn)P的軌跡方程;
(2)若直線mx一y+2m+5=0(m∈R)與點(diǎn)P的軌跡交于A、B兩點(diǎn),問:當(dāng)m變化時(shí),以線段AB為直徑的圓是否會(huì)經(jīng)過定點(diǎn)?若會(huì),求出此定點(diǎn);若不會(huì),說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com