函數(shù)數(shù)學(xué)公式與函數(shù)g(x)=2x+a僅有一個實根,則實數(shù)a的取值范圍為________.

a>4或a<3
分析:要求滿足條件關(guān)于x的方程f(x)+x-a=0有且僅有兩個實根時,實數(shù)a的取值范圍,我們可以轉(zhuǎn)化求函數(shù)y=f(x)與函數(shù)y=-x+a的圖象,有且僅有兩個交點時實數(shù)a的取值范圍.
解答:解:函數(shù)的圖象如圖所示,
當a=3時,函數(shù)y=f(x)與函數(shù)y=2x+a的圖象相切,只有一個交點,
當a=4時,直線y=2x+a過點B(0,4),此時函數(shù)y=f(x)與函數(shù)y=2x+a的圖象相切,有2個交點,
由圖可知,當a>4或a<3時,函數(shù)y=f(x)與函數(shù)y=2x+a的圖象有且僅有兩個交點,即當a>4或a<3時,g(x)=2x+a僅有一個實根,
故答案為:a>4或a<3.
點評:本題考查的知識點是根的存在性及根的個數(shù)判斷,根據(jù)方程的根即為對應(yīng)函數(shù)零點,將本題轉(zhuǎn)化為求函數(shù)零點個數(shù),進而利用圖象法進行解答是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=f(x)的圖象與函數(shù)g(x)=log2x(x>0)的圖象關(guān)于原點對稱,則f(x)的表達式為( 。
A、f(x)=
1
log2x
(x>0)
B、f(x)=
1
log2(-x)
(x<0)
C、f(x)=-log2x(x>0)
D、f(x)=-log2(-x)(x<0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

函數(shù)數(shù)學(xué)公式與函數(shù)g(x)=3a2lnx+b.
(I)設(shè)曲線y=f(x)與曲線y=g(x)在公共點處的切線相同,且f(x)在x=-2e(e是自然對數(shù)的底數(shù))時取得極值,求a、b的值;
(II)若函數(shù)g(x)的圖象過點(1,0)且函數(shù)h(x)=f(x)+g(x)-(2a+6)x在(0,4)上為單調(diào)函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:徐州模擬 題型:解答題

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為2
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年四川省瀘州市高考數(shù)學(xué)一診試卷(理科)(解析版) 題型:解答題

函數(shù)與函數(shù)g(x)=3a2lnx+b.
(I)設(shè)曲線y=f(x)與曲線y=g(x)在公共點處的切線相同,且f(x)在x=-2e(e是自然對數(shù)的底數(shù))時取得極值,求a、b的值;
(II)若函數(shù)g(x)的圖象過點(1,0)且函數(shù)h(x)=f(x)+g(x)-(2a+6)x在(0,4)上為單調(diào)函數(shù),求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案