已知函數(shù)f(x)=aln(1+ex)-(a+1)x。
(1)已知f(x)滿(mǎn)足下面兩個(gè)條件,求a的取值范圍。
①在(-∞,1]上存在極值,
②對(duì)于任意的θ∈R,c∈R直線l:xsinθ+2y+c=0都不是函數(shù)y=f(x)(x∈(-1,+∞))圖象的切線;
(2)若點(diǎn)A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3))從左到右依次是函數(shù)y=f(x)圖象上三點(diǎn),且2x2=x1+x3,當(dāng)a>0時(shí),△ABC能否是等腰三角形?若能,求△ABC面積的最大值;若不能,請(qǐng)說(shuō)明理由。
解:(1)f′(x)=a-a-1=
接下來(lái)分兩步:
㈠、先考慮條件①:
(i)當(dāng)a+1≥0時(shí),即a≥-1時(shí),可得f'(x)<0在R上恒成立,
故f(x)在區(qū)間(-∞,+∞)上為減函數(shù),與題意不符。
(ii)當(dāng)a+1<0時(shí),即a<-1時(shí),可得f'(x)≤0的解集為{x|x≥ln(-a-1)},
此時(shí)f(x)在(ln(-a-1),+∞)上單調(diào)遞減,
在(-∞,ln(-a-1))上單調(diào)遞增,
從而x0=ln(-a-1)是f(x)的極大值點(diǎn),
結(jié)合題意得ln(-a-1)<1,a>-1-e,
所以a∈(-1-e,-1);
㈡、下面找出當(dāng)a∈(-e-1,-1)時(shí),滿(mǎn)足條件②的a的取值范圍
又∵f′(x)==-1-,
設(shè)g(x)=-1-,
則g'(x)=<0恒成立,
所以f′(x)在(1,+∞)上單調(diào)遞減,
而f′(1)=-1-,結(jié)合f′(x)在(1,+∞)上連續(xù),
當(dāng)x無(wú)限的趨近于+∞時(shí),f′(x)無(wú)限的趨近于-1,
可得f′(x)∈(-1,-1-
直線l 的斜率k=,則
∵直線l 不是函數(shù)f(x)圖象的切線,
∴-1-在(1,+∞)上恒成立,
即-2a-1≤ex在(1,+∞)上恒成立,
由此可得-2a-1≤e,即a≥
綜上所述,a的取值范圍是[,-1)。
(2)由(1)知,a>0時(shí),f(x)在區(qū)間(-∞,+∞)上為減函數(shù),
∵A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3)),
∴不妨設(shè)x1<x2<x3,可得f(x1)>f(x2)>f(x3),x2=
下面用反證法說(shuō)明A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3))三點(diǎn)不共線:
若A、B、C三點(diǎn)共線,則有f(x2)=(f(x1)+f(x3))
所以 2=+≥2,得x1=x3與x1<x2<x3矛盾
接下來(lái)說(shuō)明角B是鈍角:=(x1-x2,f(x1)-f(x2)),
=(x3-x2,f(x3)-f(x2))
=(x1-x2)(x3-x2)+[f(x1)-f(x2)][f(x3)-f(x2)]
∵x1-x2<0,x3-x2>0,f(x1)-f(x2)>0,f(x3)-f(x2)<0,
<0,
可得∠B∈(,π),即△ABC是中B為鈍角
假設(shè)△ABC為等腰三角形,只能是 =
即:(x1-x22+[f(x1)-f(x2)]2=(x3-x22+[f(x3)-f(x2)]2
∵x2-x1=x3-x2,
∴[f(x1)-f(x2)]2=[f(x3)-f(x2)]2
結(jié)合f(x1)>f(x2)>f(x3),
化簡(jiǎn)得2f(x2)=f(x1)+f(x3),
也就是2aln(1+)-2(a+1)x2=aln(1+)(1+)-(a+1)(x1+x3
將2x2=x1+x3代入即得:2aln(1+)-2(a+1)x2=aln(1+)(1+)-2(a+1)x2,
∴2ln(1+)=ln(1+)(1+(1+2=(1+)(1+),
可得+2=++=+
而事實(shí)上,若①成立,根據(jù)+?2=2,
必然得到 =,與x1<x3矛盾
所以△ABC不可能為等腰三角形。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當(dāng)a∈[-2,
1
4
)
時(shí),求f(x)的最大值;
(2)設(shè)g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點(diǎn)的連線的斜率,否存在實(shí)數(shù)a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•海淀區(qū)二模)已知函數(shù)f(x)=a-2x的圖象過(guò)原點(diǎn),則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a|x|的圖象經(jīng)過(guò)點(diǎn)(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a•2x+b•3x,其中常數(shù)a,b滿(mǎn)足a•b≠0
(1)若a•b>0,判斷函數(shù)f(x)的單調(diào)性;
(2)若a=-3b,求f(x+1)>f(x)時(shí)的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a-2|x|+1(a≠0),定義函數(shù)F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數(shù)F(x)是奇函數(shù);③當(dāng)a<0時(shí),若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號(hào)是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案