【題目】雙曲線 的左、右焦點(diǎn)分別為F1、F2,直線l過F2且與雙曲線交于A、B兩點(diǎn).
(1)若l的傾斜角為 , 是等邊三角形,求雙曲線的漸近線方程;
(2)設(shè) ,若l的斜率存在,且|AB|=4,求l的斜率.

【答案】
(1)

解:設(shè)

由題意, ,

因?yàn)? 是等邊三角形,所以 ,

,解得

故雙曲線的漸近線方程為


(2)

解:由已知,

設(shè) ,直線

,得

因?yàn)? 與雙曲線交于兩點(diǎn),所以 ,且

, ,得 ,

解得 ,故 的斜率為


【解析】(1)設(shè) .根據(jù) 是等邊三角形,得到 ,解得 .(2)設(shè) , ,直線 與雙曲線方程聯(lián)立,得到一元二次方程,根據(jù) 與雙曲線交于兩點(diǎn),可得 ,且 .由|AB|=4得出 的方程求解.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用另一種形式表示下列集合:

(1){絕對(duì)值不大于3的整數(shù)};

(2){所有被3整除的數(shù)};

(3){x|x=|x|,x∈Zx<5};

(4){x|(3x-5)(x+2)(x2+3)=0,x∈Z}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】)設(shè)f(x)、g(x)、h(x)是定義域?yàn)镽的三個(gè)函數(shù),對(duì)于命題:①若f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均是增函數(shù),則f(x)、g(x)、h(x)均是增函數(shù);②若f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均是以T為周期的函數(shù),則f(x)、g(x)、h(x)均是以T為周期的函數(shù),下列判斷正確的是( 。
A.①和②均為真命題
B.①和②均為假命題
C.①為真命題,②為假命題
D.①為假命題,②為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有一塊正方形菜地 , 所在直線是一條小河,收貨的蔬菜可送到 點(diǎn)或河邊運(yùn)走。于是,菜地分為兩個(gè)區(qū)域 ,其中 中的蔬菜運(yùn)到河邊較近, 中的蔬菜運(yùn)到 點(diǎn)較近,而菜地內(nèi) 的分界線 上的點(diǎn)到河邊與到 點(diǎn)的距離相等,現(xiàn)建立平面直角坐標(biāo)系,其中原點(diǎn) 的中點(diǎn),點(diǎn) 的坐標(biāo)為(1,0),如圖

(1)求菜地內(nèi)的分界線 的方程
(2)菜農(nóng)從蔬菜運(yùn)量估計(jì)出 面積是 面積的兩倍,由此得到 面積的“經(jīng)驗(yàn)值”為 。設(shè) 上縱坐標(biāo)為1的點(diǎn),請(qǐng)計(jì)算以 為一邊、另一邊過點(diǎn) 的矩形的面積,及五邊形 的面積,并判斷哪一個(gè)更接近于 面積的經(jīng)驗(yàn)值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市場調(diào)查發(fā)現(xiàn),某種產(chǎn)品在投放市場的30天中,其銷售價(jià)格P(元)和時(shí)間t(天)(t∈N)的關(guān)系如圖所示

(1)寫出銷售價(jià)格P(元)和時(shí)間t(天)的函數(shù)解析式;
(2)若日銷售量Q(件)與時(shí)間t(天)的函數(shù)關(guān)系是Q=﹣t+40(0≤t≤30,t∈N),求該商品的日銷售金額y(元)與時(shí)間t(天)的函數(shù)解析式;
(3)問該產(chǎn)品投放市場第幾天時(shí),日銷售金額最高?最高值為多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某旅游城市為向游客介紹本地的氣溫情況,繪制了一年中各月平均最高氣溫和平均最低氣溫的雷達(dá)圖,圖中A點(diǎn)表示十月的平均最高氣溫約為15℃,B點(diǎn)表示四月的平均最低氣溫約為5℃,下面敘述不正確的是( 。

A.各月的平均最低氣溫都在0℃以上
B.七月的平均溫差比一月的平均溫差大
C.三月和十一月的平均最高氣溫基本相同
D.平均最高氣溫高于20℃的月份有5個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y=sinx﹣ cosx的圖象可由函數(shù)y=sinx+ cosx的圖象至少向右平移個(gè)單位長度得到.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示單位:cm,四邊形ABCD是直角梯形,求圖中陰影部分繞AB旋轉(zhuǎn)一周所成幾何體的表面積和體積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn , 且滿足S17>0,S18<0,則 , ,…, 中最大的項(xiàng)為(
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案