(15分)為定義在上的偶函數(shù),當(dāng)時(shí),,(其中為自然對數(shù)的底數(shù)),
1)令,求在區(qū)間上的最大值
2)若總存在實(shí)數(shù),對任意,都有成立,求正整數(shù)的最大值
:1)        2)4
(1)由題意得,在區(qū)間
所以在區(qū)間上的最大值是;(2) 對任意,都有成立,構(gòu)造函數(shù),只需求出的最大值小于或等于0,求其導(dǎo)數(shù)研究單調(diào)性可解決.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

定義:已知函數(shù)f(x)與g(x),若存在一條直線y="kx" +b,使得對公共定義域內(nèi)的任意實(shí)數(shù)均滿足g(x)≤f(x)≤kx+b恒成立,其中等號在公共點(diǎn)處成立,則稱直線y="kx" +b為曲線f(x)與g(x)的“左同旁切線”.已知
(I)證明:直線y=x-l是f(x)與g(x)的“左同旁切線”;
(Ⅱ)設(shè)P(是函數(shù) f(x)圖象上任意兩點(diǎn),且0<x1<x2,若存在實(shí)數(shù)x3>0,使得.請結(jié)合(I)中的結(jié)論證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)(a ,bR,e為自然對數(shù)的底數(shù)),.
(I )當(dāng)b=2時(shí),若存在單調(diào)遞增區(qū)間,求a的取值范圍;
(II)當(dāng)a>0 時(shí),設(shè)的圖象C1的圖象C2相交于兩個(gè)不同的點(diǎn)P、Q,過線段PQ的中點(diǎn)作x軸的垂線交C1于點(diǎn),求證.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

定義在R上的可導(dǎo)函數(shù)f(x),已知y=e f ′(x)的圖象如下圖所示,則y=f(x)的增區(qū)間是
 
A.(-∞,1)B.(-∞,2)C.(0,1)D.(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若函數(shù)分別是上的奇函數(shù)、偶函數(shù),且滿足,則有(  ).
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)y=x2cosx的導(dǎo)數(shù)為()
A.y′=x2cosx-2xsinx B.y′=2xcosx+x2sinx
C.y′=2xcosx-x2sinxD.y′=xcosx-x2sinx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

(文)已知,則(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

等于(     )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)函數(shù)處取得極值,則的值為(  )
A.B.C.D.4

查看答案和解析>>

同步練習(xí)冊答案