11.已知F是拋物線C:y2=8x的焦點(diǎn),M是C上一點(diǎn),F(xiàn)M的延長線交y軸于點(diǎn)N.若M為FN的中點(diǎn),則|FN|=6.

分析 求出拋物線的焦點(diǎn)坐標(biāo),推出M坐標(biāo),然后求解即可.

解答 解:拋物線C:y2=8x的焦點(diǎn)F(2,0),M是C上一點(diǎn),F(xiàn)M的延長線交y軸于點(diǎn)N.若M為FN的中點(diǎn),
可知M的橫坐標(biāo)為:1,則M的縱坐標(biāo)為:$±2\sqrt{2}$,
|FN|=2|FM|=2$\sqrt{(1-2)^{2}+(±2\sqrt{2}-0)^{2}}$=6.
故答案為:6.

點(diǎn)評(píng) 本題考查拋物線的簡單性質(zhì)的應(yīng)用,考查計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.海水養(yǎng)殖場進(jìn)行某水產(chǎn)品的新、舊網(wǎng)箱養(yǎng)殖方法的產(chǎn)量對(duì)比,收獲時(shí)各隨機(jī)抽取了100個(gè)網(wǎng)箱,測量各箱水產(chǎn)品的產(chǎn)量(單位:kg),其頻率分布直方圖如下:

(1)記A表示事件“舊養(yǎng)殖法的箱產(chǎn)量低于50kg”,估計(jì)A的概率;
(2)填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有99%的把握認(rèn)為箱產(chǎn)量與養(yǎng)殖方法有關(guān):
箱產(chǎn)量<50kg箱產(chǎn)量≥50kg
舊養(yǎng)殖法
新養(yǎng)殖法
(3)根據(jù)箱產(chǎn)量的頻率分布直方圖,對(duì)兩種養(yǎng)殖方法的優(yōu)劣進(jìn)行比較.
附:
P(K2≥K)0.0500.0100.001
K3.8416.63510.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知sinα-cosα=$\frac{4}{3}$,則sin2α=( 。
A.-$\frac{7}{9}$B.-$\frac{2}{9}$C.$\frac{2}{9}$D.$\frac{7}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知拋物線C:y2=2px過點(diǎn)P(1,1).過點(diǎn)(0,$\frac{1}{2}$)作直線l與拋物線C交于不同的兩點(diǎn)M,N,過點(diǎn)M作x軸的垂線分別與直線OP、ON交于點(diǎn)A,B,其中O為原點(diǎn).
(1)求拋物線C的方程,并求其焦點(diǎn)坐標(biāo)和準(zhǔn)線方程;
(2)求證:A為線段BM的中點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知直三棱柱ABC-A1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,則異面直線AB1與BC1所成角的余弦值為( 。
A.$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{15}}{5}$C.$\frac{\sqrt{10}}{5}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.甲、乙、丙、丁四位同學(xué)一起去問老師詢問成語競賽的成績.老師說:你們四人中有2位優(yōu)秀,2位良好,我現(xiàn)在給甲看乙、丙的成績,給乙看丙的成績,給丁看甲的成績.看后甲對(duì)大家說:我還是不知道我的成績.根據(jù)以上信息,則( 。
A.乙可以知道四人的成績B.丁可以知道四人的成績
C.乙、丁可以知道對(duì)方的成績D.乙、丁可以知道自己的成績

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=2an-2(n∈N*),數(shù)列{bn}中,b1=1,bn+1-bn=2
(1)求數(shù)列{an},{bn}的通項(xiàng)an和bn;
(2)設(shè)cn=an•bn,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)=sin(ωx+φ)(φ>0,-π<φ<0)的最小正周期是π,將f(x)圖象向左平移$\frac{π}{3}$個(gè)單位長度后,所得的函數(shù)圖象過點(diǎn)P(0,1),則函數(shù)f(x)(  )
A.在區(qū)間[-$\frac{π}{6}$,$\frac{π}{3}$]上單調(diào)遞減B.在區(qū)間[-$\frac{π}{6}$,$\frac{π}{3}$]上單調(diào)遞增
C.在區(qū)間[-$\frac{π}{3}$,$\frac{π}{6}$]上單調(diào)遞減D.在區(qū)間[-$\frac{π}{3}$,$\frac{π}{6}$]上單調(diào)遞增

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知{xn}是各項(xiàng)均為正數(shù)的等比數(shù)列,且x1+x2=3,x3-x2=2.
(Ⅰ)求數(shù)列{xn}的通項(xiàng)公式;
(Ⅱ)如圖,在平面直角坐標(biāo)系xOy中,依次連接點(diǎn)P1(x1,1),P2(x2,2)…Pn+1(xn+1,n+1)得到折線P1 P2…Pn+1,求由該折線與直線y=0,x=x1,x=xn+1所圍成的區(qū)域的面積Tn

查看答案和解析>>

同步練習(xí)冊答案