【題目】“奶茶妹妹”對(duì)某時(shí)間段的奶茶銷(xiāo)售量及其價(jià)格進(jìn)行調(diào)查,統(tǒng)計(jì)出售價(jià)x元和銷(xiāo)售量y杯之間的一組數(shù)據(jù)如下表所示:
價(jià)格x | 5 | 5.5 | 6.5 | 7 |
銷(xiāo)售量y | 12 | 10 | 6 | 4 |
通過(guò)分析,發(fā)現(xiàn)銷(xiāo)售量y對(duì)奶茶的價(jià)格x具有線(xiàn)性相關(guān)關(guān)系.
(1)求銷(xiāo)售量y對(duì)奶茶的價(jià)格x的回歸直線(xiàn)方程;
注:在回歸直線(xiàn)y= 中, , ﹣ . =146.5.
(2)欲使銷(xiāo)售量為13杯,則價(jià)格應(yīng)定為多少?
【答案】
(1)解: = =6, = =8.
=5×12+5.5×10+6.5×6+7×4=182,
=52+5.52+6.52+72=146.5,
= =﹣4, =8+4×6=32.
∴銷(xiāo)售量y對(duì)奶茶的價(jià)格x的回歸直線(xiàn)方程為 =﹣4x+32.
(2)解:令﹣4x+32=13,解得x=4.75.
答:商品的價(jià)格定為4.75元
【解析】(1)根據(jù)回歸系數(shù)公式計(jì)算回歸系數(shù);(2)把y=13代入回歸方程計(jì)算x.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)z1 , z2是復(fù)數(shù),則下列命題中的假命題是( )
A.若|z1﹣z2|=0,則 =
B.若z1= ,則 =z2
C.若|z1|=|z2|,則z1? =z2?
D.若|z1|=|z2|,則z12=z22
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)=ex﹣ax2 , 曲線(xiàn)y=f(x)在(1,f(1))處的切線(xiàn)方程為y=bx+1.
(1)求a,b的值;
(2)求f(x)在[0,1]上的最大值;
(3)證明:當(dāng)x>0時(shí),ex+(1﹣e)x﹣xlnx﹣1≥0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知{an}為等差數(shù)列,前n項(xiàng)和為Sn(n∈N*),{bn}是首項(xiàng)為2的等比數(shù)列,且公比大于0,b2+b3=12,b3=a4﹣2a1 , S11=11b4 . (13分)
(Ⅰ)求{an}和{bn}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{a2nbn}的前n項(xiàng)和(n∈N*).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】非空數(shù)集A如果滿(mǎn)足:①0A;②若對(duì)x∈A,有 ∈A,則稱(chēng)A是“互倒集”.給出以下數(shù)集:
①{x∈R|x2+ax+1=0}; ②{x|x2﹣4x+1<0};③{y|y= }.
其中“互倒集”的個(gè)數(shù)是( )
A.3
B.2
C.1
D.0
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,圓C的參數(shù)方程 (φ為參數(shù)).以O(shè)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(1)求圓C的極坐標(biāo)方程;
(2)直線(xiàn)l的極坐標(biāo)方程是ρ(sinθ+ )=3 ,射線(xiàn)OM:θ= 與圓C的交點(diǎn)為O,P,與直線(xiàn)l的交點(diǎn)為Q,求線(xiàn)段PQ的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c且滿(mǎn)足csinA=acosC,
(1)求角C的大;
(2)求 sinA﹣cos(B+ )的最大值,并求取得最大值時(shí)角A,B的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在銳角△ABC中,a,b,c是角A,B,C的對(duì)邊 sinC﹣cosB=cos(A﹣C).
(1)求角A的度數(shù);
(2)若a=2 ,且△ABC的面積是3 ,求b+c.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)=axn(1﹣x)(x>0,n∈N*),當(dāng)n=﹣2時(shí),f(x)的極大值為 .
(1)求a的值;
(2)求證:f(x)+lnx≤0;
(3)求證:f(x)< .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com