已知△ABC的△ABC的三邊分別為且周長為6,成等比數(shù)列,求(1)△ABC的面積S的最大值;   (2)的取值范圍.

解:依題意得,由余弦定理得

故有,又從而

(1)所以,即 

(2)所以 

∵可以求得的范圍為,∴


解析:

同答案

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知△ABC的面積為14,D、E分別為邊AB、BC上的點,且AD:DB=BE:EC=2:1,AE與CD交于P.設存在λ和μ使
AP
AE
,
PD
CD
,
AB
=
a
,
BC
=
b

(1)求λ及μ;
(2)用
a
,
b
表示
BP

(3)求△PAC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC的三個頂點均在球O的球面上,且AB=AC=1,∠BAC=120°,直線OA與平面ABC所成的角的正弦值為
6
3
,則球面上B、C兩點間的球面距離為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC的AB邊上的高線所在直線的方程為2x-3y+1=0和AC邊上的高線所在的直線方程為x+y=0,頂點A(1,2),求BC邊所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC的頂點A(5,1),AB邊上的中線CM所在直線方程為2x-y-5=0.AC邊上的高BH所在直線為x-2y-5=0.
求:(1)頂點C的坐標;
(2)直線BC的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2006•南京一模)已知△ABC的三個頂點在同一球面上,∠BAC=90°,AB=AC=2.若球心O到平面ABC的距離為1,則該球的半徑為( 。

查看答案和解析>>

同步練習冊答案