7.橢圓$\frac{x^2}{2}$+y2=1的焦點(diǎn)坐標(biāo)為(±1,0).

分析 求出橢圓的長(zhǎng)半軸與短半軸的長(zhǎng),然后求解即可.

解答 解:橢圓$\frac{x^2}{2}$+y2=1,可得a=$\sqrt{2}$,b=1,則c=1,
∴橢圓$\frac{x^2}{2}$+y2=1的焦點(diǎn)坐標(biāo)為(±1,0).
故答案為:(±1,0).

點(diǎn)評(píng) 本題考查橢圓的簡(jiǎn)單性質(zhì)的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.A、B、C是三個(gè)命題,如果A是B的充要條件,C是B的充分不必要條件,則C是A的充分條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.cos(-300°)=( 。
A.$\frac{{\sqrt{3}}}{2}$B.$-\frac{1}{2}$C.$-\frac{{\sqrt{3}}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.經(jīng)過(guò)點(diǎn)M(2,1)作圓C:x2+y2=5的切線,則切線方程是2x+y-5=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)f(x)=loga(ax-1),其中a>0,且a≠1.
(1)求證:函數(shù)f(x)的圖象在y軸的一側(cè);
(2)設(shè)A(x1,y1),B(x2,y2)是函數(shù)f(x)的圖象上任意兩個(gè)不同的點(diǎn),且x1<x2,求證:y1<y2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知函數(shù)f(x)=|xex+1|,關(guān)于x的方程f2(x)+2sinα•f(x)+cosα=0有四個(gè)不等實(shí)根,sinα-cosα≥λ恒成立,則實(shí)數(shù)λ的最大值為( 。
A.-$\frac{7}{5}$B.-$\frac{1}{2}$C.-$\sqrt{2}$D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知具有線性相關(guān)的兩個(gè)變量x,y之間的一組數(shù)據(jù)如下:
x01234
y2.24.34.54.86.7
回歸方程是$\widehat{y}$=bx+a,其中b=0.95,a=$\overline{y}$-b$\overline{x}$.則當(dāng)x=6時(shí),y的預(yù)測(cè)值為( 。
A.8.1B.8.2C.8.3D.8.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.求滿足下列條件的直線的一般式方程:
(Ⅰ)經(jīng)過(guò)兩條直線2x-3y+10=0  和3x+4y-2=0 的交點(diǎn),且垂直于直線3x-2y+4=0
(Ⅱ)與兩條平行直線3x+2y-6=0及6x+4y-3=0等距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.等邊三角形ABC的邊長(zhǎng)為1,BC上的高為AD,沿高AD折成直二面角,則A到BC的距離是( 。
A.$\sqrt{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{14}}{4}$

查看答案和解析>>

同步練習(xí)冊(cè)答案