分析 作函數(shù)$f(x)=\left\{\begin{array}{l}|{ln({-x})}|,x<0\\{x^2}-4x+3,x≥0\end{array}\right.$的圖象,從而可化為x2-2bx+3=0在(0,3]上有兩個不同的解;而m(x)=$\frac{x}{2}$+$\frac{3}{2x}$在(0,$\sqrt{3}$)上是減函數(shù),在( $\sqrt{3}$,3]上是增函數(shù);從而解得.
解答 解:作函數(shù)$f(x)=\left\{\begin{array}{l}|{ln({-x})}|,x<0\\{x^2}-4x+3,x≥0\end{array}\right.$的圖象如下,
,∵H(x)=[f(x)]2-2bf(x)+3有8個不同的零點,
∴g(x)=x2-2bx+3在(0,3]上有兩個零點;
即x2-2bx+3=0在(0,3]上有兩個不同的解;
故b=$\frac{{x}^{2}+3}{2x}$=$\frac{x}{2}$+$\frac{3}{2x}$在(0,3]上有兩個不同的解;
而m(x)=$\frac{x}{2}$+$\frac{3}{2x}$在(0,$\sqrt{3}$)上是減函數(shù),在($\sqrt{3}$,3]上是增函數(shù);
而m($\sqrt{3}$)=$\sqrt{3}$,m(3)=2;
故$\sqrt{3}$<b≤2,
故答案為:($\sqrt{3}$,2].
點評 本題考查了分類討論的思想應(yīng)用及數(shù)形結(jié)合的思想應(yīng)用,同時考查了函數(shù)的零點與方程的根的關(guān)系應(yīng)用.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{3}}{2}$ | B. | -$\frac{\sqrt{3}}{2}$ | C. | $\frac{1}{2}$ | D. | -$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 34+6$\sqrt{5}$ | B. | 44+12$\sqrt{5}$ | C. | 34+6$\sqrt{3}$ | D. | 32+6$\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 在區(qū)間(0,1)內(nèi)有零點,在區(qū)間(1,+∞)內(nèi)無零點 | |
B. | 在區(qū)間(0,1)內(nèi)有零點,在區(qū)間(1,+∞)內(nèi)有零點 | |
C. | 在區(qū)間(0,3),(3,+∞)均無零點 | |
D. | 在區(qū)間(0,3),(3,+∞)均有零點 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若α⊥γ,β⊥γ,則α∥β | B. | 若l1∥α,l1⊥β,則α∥β | ||
C. | 若α∥β,l1∥α,l2∥β,則l1∥l2 | D. | 若α⊥β,l1⊥α,l2⊥β,則l1⊥l2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com