函數(shù)f(x)=3x2-x3的單調(diào)增區(qū)間是
(0,2)
(0,2)
分析:先求函數(shù)f(x)=3x2-x3的導(dǎo)函數(shù)f′(x),再解不等式f′(x)>0,即可得函數(shù)的單調(diào)增區(qū)間
解答:解:∵f′(x)=6x-3x2=-3x(x-2)
由f′(x)>0,得0<x<2
∴函數(shù)f(x)=3x2-x3的單調(diào)增區(qū)間是(0,2)
故答案為(0,2)
點(diǎn)評(píng):本題考察了導(dǎo)數(shù)在函數(shù)單調(diào)性中的應(yīng)用,求函數(shù)單調(diào)區(qū)間的方法
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a為實(shí)數(shù),函數(shù)f(x)=3x2-2ax+a2-1.
(1)若f(
1
2
)≥0,求a的取值范圍;
(2)若不等式f(x)≤0在x∈[
1
3
,
1
2
]上恒成立,求a的取值范圍;
(3)若x∈(a,+∞),求不等式f(x)≥0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=
3x2-4(x>0)
π(x=0)
0(x<0)
,則f(f(0))=
2-4
2-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=3x2+(p+2)x+3,p為實(shí)數(shù).
(1)若函數(shù)是偶函數(shù),試求函數(shù)f(x)在區(qū)間[-1,3]上的值域;
(2)已知α:函數(shù)f(x)在區(qū)間[-
12
,+∞)
上是增函數(shù),β:方程f(x)=p有小于-2的實(shí)根.試問:α是β的什么條件(指出充分性和必要性)?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•武昌區(qū)模擬)已知函數(shù)f(x)的導(dǎo)函數(shù)f(x)=-3x2+6x+9.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若f(x)在區(qū)間[-2,2]上的最大值為20,求它在該區(qū)間上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=3x2+bx+1是偶函數(shù),g(x)=5x+c是奇函數(shù),正數(shù)數(shù)列{an}滿足a1=1,f(an+an+1)-g(an+1an+an2)=1.
(1)求{an}的通項(xiàng)公式;
(2)若{an}的前n項(xiàng)和為Sn,求Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案