17.a(chǎn)n=2n-1,Sn=n2

分析 判斷數(shù)列是等差數(shù)列,然后求解數(shù)列的Sn

解答 解:an=2n-1,可得an+1-an=2(n+1)-1-(2n-1)=2,所以數(shù)列是等差數(shù)列,公差為2,首項(xiàng)為:1,
Sn=n•1+$\frac{n(n-1)}{2}×2$=n2
故答案為:n2

點(diǎn)評 本題考查等差數(shù)列的判定,等差數(shù)列求和,考查計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)函數(shù)f(x)=ex(x-aex)(其中e為自然對數(shù)的底數(shù))恰有兩個(gè)極值點(diǎn)x1,x2(x1<x2),則下列說法不正確的是(  )
A.0<a<$\frac{1}{2}$B.-1<x1<0C.-$\frac{1}{2}$<f(x1)<0D.f(x1)+f(x2)>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知實(shí)數(shù)-9,a1,a2,-1成等差數(shù)列,-9,b1,b2,b3,-1成等比數(shù)列,則a2b2-a1b2等于(  )
A.8B.-8C.±8D.$\frac{9}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知二次函數(shù)f(x)=2x2-(a+6)x-2a2-a,若在[0,1]上至少存在一個(gè)實(shí)數(shù)b,是F(b)>0,則實(shí)數(shù)a的取值范圍是(  )
A.$(-\frac{1}{2},0)$B.$(-\frac{1}{2},\frac{1}{2})$C.$(0,\frac{1}{2})$D.$[-\frac{1}{2},0]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知a∈R,集合A={x|ax2-2x+2a-1=0},f(x)=x+$\frac{a}{x}$,命題p:A=∅,命題q:f(x)在[1,+∞)上遞增.
(1)若p∧q為真,求實(shí)數(shù)a的取值范圍;
(2)若p∧q為假,p∨q為真,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知命題p:1∈{x|(x+2)(x-3)<0},命題q:∅={0},則下面判斷正確的是( 。
A.p假q真B.“p∨q”為真C.“p∧q”為真D.“¬q”為假

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知等差數(shù)列{an}中,a1=1,an+1=2an+2n+1(2n+1),求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若函數(shù)f(x)=ax+b的圖象如圖所示,則函數(shù)g(x)=loga(x+b)的圖象可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知各項(xiàng)均為正數(shù)的等比數(shù)列{an}中,a2=1,則其前3項(xiàng)的和S3的取值范圍是( 。
A.(-∞,-1]B.[3,+∞)C.(-∞,0)∪(1,+∞)D.(-∞,-1]∪[3,+∞)

查看答案和解析>>

同步練習(xí)冊答案