11.如圖,正三棱柱ABC-A1B1C1的各棱長(zhǎng)都等于2,D在AC1上,F(xiàn)為BB1中點(diǎn),且FD⊥AC1,有下述結(jié)論
(1)AC1⊥BC;   
(2)$\frac{AD}{D{C}_{1}}$=1;
(3)面FAC1⊥面ACC1A1
(4)三棱錐D-ACF的體積為$\frac{\sqrt{3}}{3}$.
其中正確的個(gè)數(shù)為( 。
A.1B.2C.3D.4

分析 (1)連接AB1,則∠B1C1A即為BC和AC1所成的角,由余弦定理,即可判斷;
(2)連接AF,C1F,由正三棱柱的定義,即可判斷;
(3)連接CD,則CD⊥AC1,且FD⊥AC1,則∠CDF為二面角F-AC1-C的平面角,通過解三角形CDF,即可判斷;
(4)由于AD⊥平面CDF,通過VD-ACF=VA-DCF即可求出體積.

解答 解:(1)連接AB1,則∠B1C1A即為BC和AC1所成的角,在三角形AB1C1中,B1C1=2,AB1=2$\sqrt{2}$,
AC1=2$\sqrt{2}$,cos∠B1C1A=$\frac{8+4-8}{2×2\sqrt{2}×2}$=$\frac{\sqrt{2}}{4}$,
故(1)錯(cuò);
(2)連接AF,C1F,則易得AF=FC1=$\sqrt{5}$,
又FD⊥AC1,則AD=DC1,故(2)正確;
(3)連接CD,則CD⊥AC1,且FD⊥AC1,
則∠CDF為二面角F-AC1-C的平面角,CD=$\sqrt{2}$,CF=$\sqrt{5}$,DF=$\sqrt{3}$,
即CD2+DF2=CF2,故二面角F-AC1-C的大小為90°,面FAC1⊥面ACC1A1,故(3)正確;
(4)由于CD⊥AC1,且FD⊥AC1,則AD⊥平面CDF,
則VD-ACF=VA-DCF=$\frac{1}{3}$•AD•S△DCF=$\frac{1}{3}×\sqrt{2}×\frac{1}{2}×\sqrt{2}×\sqrt{3}$=$\frac{\sqrt{3}}{3}$.故(4)正確.
故選:C.

點(diǎn)評(píng) 本題考查正三棱柱的定義和性質(zhì),考查線面垂直的判定和性質(zhì),空間的二面角,以及棱錐的體積,注意運(yùn)用轉(zhuǎn)換法,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.化下列二次積分為極坐標(biāo)形式:${∫}_{0}^{1}$dx${∫}_{0}^{1}$f(x,y)dy.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,在三棱錐P-ABC中,平面PAB⊥平面ABC,PA=AB=AC=1,
∠BAC=∠BAP=120°.
(1)求證:AB⊥PC;
(2)若E為BC的中點(diǎn),求直線PE與平面PAB所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.如圖,正方體ABCD-A1B1C1D1的棱長(zhǎng)為1,P為BC的中點(diǎn),Q為線段CC1上的動(dòng)點(diǎn),過點(diǎn) A,P,Q的平面截該正方體所得的截面記為S,則下列命題正確的是( 。
①三棱錐P-AA1Q的體積為定值;
②當(dāng)CQ=$\frac{1}{2}$時(shí),S為等腰梯形;
③當(dāng)$\frac{3}{4}$<CQ<1時(shí),S為六邊形; 
④當(dāng)CQ=1時(shí),S的面積為$\frac{{\sqrt{6}}}{2}$.
A.①④B.①②③C.②③④D.①②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖1,某大風(fēng)車的半徑為2米,每12秒沿逆時(shí)針方向勻速旋轉(zhuǎn)一周,它的最低點(diǎn)O離地面1米.風(fēng)車圓周上一點(diǎn)A從最低點(diǎn)O開始,運(yùn)動(dòng)t秒后與地面距離為h米.
(1)直接寫出函數(shù)h=f(t)的關(guān)系式,并在給出的坐標(biāo)系中用五點(diǎn)作圖法作出h=f(t)在[0,12)上的圖象(要列表,描點(diǎn));
(2)A從最低點(diǎn)O開始,沿逆時(shí)針方向旋轉(zhuǎn)第一周內(nèi),有多長(zhǎng)時(shí)間離地面的高度超過4米?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖1,在直角梯形ABCD中,AB∥CD,AB⊥AD,且AB=AD=$\frac{1}{2}$CD=1.現(xiàn)以AD為一邊向梯形外作正方形ADEF,然后沿邊AD將正方形ADEF翻折,使平面ADEF與平面ABCD垂直,M為ED的中點(diǎn),如圖2.

(1)求證:AM∥平面BEC;
(2)求點(diǎn)D到平面BEC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,已知四棱錐P-ABCD中,底面ABCD是平行四邊形,BC⊥平面PAB,PA⊥AB,M為PB的中點(diǎn),PA=AD=2,AB=1.
(1)求證:PD∥平面ACM;
(2)求點(diǎn)A到平面MBC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)在定義域R上是單調(diào)遞減函數(shù),若對(duì)任意x∈R,都有f[f(x)-ax+1]=0成立(其中a>0且a≠1).
(1)求f(x)的解析式;
(2)解關(guān)于x的不等式f-1[3+(x-4)a]<2f-1(x-3)+1;
(3)已知f(-3)=3,關(guān)于x的不等式2f-1(x)<m+f-1(x-1)在x∈[$\frac{1}{2}$,4]有解,求實(shí)數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.“光盤行動(dòng)”已經(jīng)發(fā)起兩年,為了調(diào)查人們的節(jié)約意識(shí),某班幾位同學(xué)組成研究性學(xué)習(xí)小組,從某社區(qū)[25,55]歲的人群中隨機(jī)抽取n人進(jìn)行了一次調(diào)查,得到如下統(tǒng)計(jì)表:
組數(shù)分組頻數(shù)頻率關(guān)盤組占本組的比例
第一組[25,30)500.0530%
第二組[30,35)1000.130%
第三組[35,40)1500.1540%
第四組[40,45)2000.250%
第五組[45,50)ab65%
第六組[50,55)2000.260%
(1)求a,b的值,并估計(jì)本社區(qū)[25,55]歲的人群中“光盤族”人數(shù)所占的比例;
(2)從年齡段在[35,45)的“光盤族”中采用分層抽樣法抽取8人參加節(jié)約糧食宣傳活動(dòng),并從這8人中選取2人作為領(lǐng)隊(duì),求選取的2名領(lǐng)隊(duì)分別來自[35,40)和[40,45)兩個(gè)年齡段的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案