【題目】在海岸A處,發(fā)現(xiàn)北偏東45°方向,距A處( ﹣1)海里的B處有一艘走私船,在A處北偏西75°方向,距A處2海里的C處的緝私船奉命以10 海里/小時(shí)的速度追截走私船,此時(shí)走私船正以10海里/小時(shí)的速度從B處向北偏東30°的方向逃竄,問緝私船沿什么方向能最快追上走私船,并求出所需要的時(shí)間.
【答案】解:如圖所示,設(shè)緝私船追上走私船需t小時(shí), 則有CD= ,BD=10t.在△ABC中,
∵AB= ﹣1,AC=2,
∠BAC=45°+75°=120°.
根據(jù)余弦定理可求得BC= .
∠CBD=90°+30°=120°.
在△BCD中,根據(jù)正弦定理可得
sin∠BCD= ,
∵∠CBD=120°,∴∠BCD=30°,∠BDC=30°,
∴BD=BC= ,則有
10t= ,t= =0.245(小時(shí))=14.7(分鐘).
所以緝私船沿北偏東60°方向,需14.7分鐘才能追上走私船.
【解析】設(shè)緝私船追上走私船需t小時(shí),進(jìn)而可表示出CD和BD,進(jìn)而在△ABC中利用余弦定理求得BC,進(jìn)而在△BCD中,根據(jù)正弦定理可求得sin∠BCD的值,進(jìn)而求得∠BDC=∠BCD=30°進(jìn)而求得BD,進(jìn)而利用BD=10t求得t.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)求函數(shù)的極值;
(2)若時(shí),函數(shù)有且只有一個(gè)零點(diǎn),求實(shí)數(shù)的值;
(3若,對(duì)于區(qū)間上的任意兩個(gè)不相等的實(shí)數(shù),都有成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A(﹣ ,0),B( ,0),P是平面內(nèi)的一個(gè)動(dòng)點(diǎn),直線PA與PB交于點(diǎn)P,且它們的斜率之積是﹣ .
(1)求動(dòng)點(diǎn)P的軌跡C的方程;
(2)設(shè)直線l:y=kx+1與曲線C交于M、N兩點(diǎn),當(dāng)線段MN的中點(diǎn)在直線x+2y=0上時(shí),求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ)(其中A>0,ω>0,|φ|< )的部分圖象如圖所示.
(1)求函數(shù)y=f(x)的解析式;
(2)求函數(shù)y=f(x)的單調(diào)增區(qū)間;
(3)求方程f(x)=0的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】渝州集團(tuán)對(duì)所有員工進(jìn)行了職業(yè)技能測(cè)試從甲、乙兩部門中各任選10名員工的測(cè)試成績(單位:分)數(shù)據(jù)的莖葉圖如圖所示.
(1)若公司決定測(cè)試成績高于85分的員工獲得“職業(yè)技能好能手”稱號(hào),求從這20名員工中任選三人,其中恰有兩人獲得“職業(yè)技能好能手”的概率;
(2)公司結(jié)合這次測(cè)試成績對(duì)員工的績效獎(jiǎng)金進(jìn)行調(diào)整(績效獎(jiǎng)金方案如下表),若以甲部門這10人的樣本數(shù)據(jù)來估計(jì)該部門總體數(shù)據(jù),且以頻率估計(jì)概率,從甲部門所有員工中任選3名員工,記績效獎(jiǎng)金不小于的人數(shù)為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com