【題目】已知命題 :方程 表示焦點(diǎn)在 軸上的橢圓,命題 :雙曲線 的離心率 ,若命題 , 中有且只有一個(gè)為真命題,求實(shí)數(shù) 的取值范圍.
【答案】解:若命題 :方程 表示焦點(diǎn)在 軸上的橢圓為真命題,
則 ,解得 ,
則命題 為假命題時(shí), 或 .
若命題 :雙曲線 的離心率 為真命題,
則 ,即 ,
則命題 為假命題時(shí), 或 ,
因?yàn)槊} , 中有且只有一個(gè)為真命題,
當(dāng) 真 假時(shí), ;當(dāng) 假 真時(shí), ,
綜上所述,實(shí)數(shù) 的取值范圍是 或 .
【解析】先解出p,q分別成立時(shí)的范圍:由橢圓的標(biāo)準(zhǔn)方程可得命題p成立時(shí)m的范圍,由雙曲線的標(biāo)準(zhǔn)方程和離心率可知命題q成立時(shí)m的范圍;再分情況討論:命題p成立且q不成立時(shí)m的范圍,命題q成立且p不成立時(shí)m的范圍;最后將兩種情況并起來。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)生對函數(shù)的性質(zhì)進(jìn)行研究,得出如下的結(jié)論:
①函數(shù)在上單調(diào)遞增,在上單調(diào)遞減;
②點(diǎn)是函數(shù)圖像的一個(gè)對稱中心;
③存在常數(shù),使對一切實(shí)數(shù)均成立;
④函數(shù)圖像關(guān)于直線對稱.其中正確的結(jié)論是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)關(guān)于的一元二次方程.
(1)若是從0,1,2,3四個(gè)數(shù)中任取的一個(gè)數(shù), 是從0,1,2三個(gè)數(shù)中任取的一個(gè)數(shù),求上述方程有實(shí)根的概率;
(2)若時(shí)從區(qū)間上任取的一個(gè)數(shù), 是從區(qū)間上任取的一個(gè)數(shù),求上述方程有實(shí)根的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=cosx的圖象與直線x= ,x= 以及x軸所圍成的圖形的面積為a,則(x﹣ )(2x﹣ )5的展開式中的常數(shù)項(xiàng)為(用數(shù)字作答).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角梯形SABC中,∠B=∠C= ,D為邊SC上的點(diǎn),且AD⊥SC,現(xiàn)將△SAD沿AD折起到達(dá)PAD的位置(折起后點(diǎn)S記為P),并使得PA⊥AB.
(1)求證:PD⊥平面ABCD;
(2)已知PD=AD,PD+AD+DC=6,G是AD的中點(diǎn),當(dāng)線段PB取得最小值時(shí),則在平面PBC上是否存在點(diǎn)F,使得FG⊥平面PBC?若存在,確定點(diǎn)F的位置,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓C: 的右頂點(diǎn)為A,離心率為e,且橢圓C過點(diǎn) ,以AE為直徑的圓恰好經(jīng)過橢圓的右焦點(diǎn).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)已知?jiǎng)又本l(直線l不過原點(diǎn)且斜率存在)與橢圓C交于P,Q兩個(gè)不同的點(diǎn),且△OPQ的面積S=1,若N為線段PQ的中點(diǎn),問:在x軸上是否存在兩個(gè)定點(diǎn)E1 , E2 , 使得直線NE1與NE2的斜率之積為定值?若存在,求出E1 , E2的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知MOD函數(shù)是一個(gè)求余函數(shù),記MOD(m,n)表示m除以n的余數(shù),例如MOD(8,3)=2.如圖是某個(gè)算法的程序框圖,若輸入m的值為48時(shí),則輸出i的值為( )
A.7
B.8
C.9
D.10
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線 過坐標(biāo)原點(diǎn) ,圓 的方程為 .
(1)當(dāng)直線 的斜率為 時(shí),求 與圓 相交所得的弦長;
(2)設(shè)直線 與圓 交于兩點(diǎn) ,且 為 的中點(diǎn),求直線 的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù) ,若函數(shù) 在x=1處與直線 相切.
(Ⅰ)求實(shí)數(shù)a,b的值;
(Ⅱ)求函數(shù) 在 上的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com