10.若函數(shù)$f(x)=2sin({ωx+\frac{π}{3}})$(ω>0)的圖象與x軸相鄰兩個(gè)交點(diǎn)間的距離為2,則實(shí)數(shù)ω的值為$\frac{π}{2}$.

分析 由題意可得函數(shù)的周期為4,再根據(jù)y=Asin(ωx+φ)的周期等于 T=$\frac{2π}{ω}$,求得ω的值.

解答 解:由題意可得,函數(shù)的周期為2×2=$\frac{2π}{ω}$,求得ω=$\frac{π}{2}$,
故答案為:$\frac{π}{2}$.

點(diǎn)評(píng) 本題主要考查三角函數(shù)的周期性及其求法,利用了y=Asin(ωx+φ)的周期等于 T=$\frac{2π}{ω}$,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2017屆江西省紅色七校高三上學(xué)期聯(lián)考一數(shù)學(xué)(理)試卷(解析版) 題型:選擇題

某幾何體的三視圖如圖所示,則該幾何體的體積為 ( )

A.5 B.4 C.3 D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.設(shè)函數(shù)f(x)=$co{s}^{2}(\frac{π}{2}+x)$+$\sqrt{3}$sin($\frac{π}{2}$+x)cos($\frac{5π}{2}$-x),x∈R,求函數(shù)f(x)的單調(diào)遞增區(qū)間,并求f(x)在區(qū)間[-$\frac{π}{4},\frac{π}{6}$]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.是否存在經(jīng)過(guò)互異三點(diǎn)(1,1)、(3,2)和(m,1)的拋物線y=ax2+bx+c?若存在,求a、b、c的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.如果方程x6+px4+qx2-225=0有6個(gè)根,且這6個(gè)根成等差數(shù)列,則q=$\frac{361}{2}\root{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.設(shè)數(shù)列{an}滿足a2+a4=10,點(diǎn)Pn(n,an)對(duì)任意的n∈N+,都有向量$\overrightarrow{{P}_{n}{P}_{n+1}}$=(1,2),則數(shù)列{an}的前n項(xiàng)和Sn=n2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知復(fù)數(shù)z1=2+i,z2=1-i,則在z=z1•z2復(fù)平面上對(duì)應(yīng)的點(diǎn)位于( 。
A.第四象限B.第一象限C.第二象限D.第三象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.設(shè)函數(shù)f(x)=4cosxsin(x-$\frac{π}{3}$)+$\sqrt{3}$,x∈R
(Ⅰ)當(dāng)x∈[0,$\frac{π}{2}$],時(shí),求函數(shù) f (x)的值域;
(Ⅱ)已知函數(shù) y=f (x)的圖象與直線 y=1有交點(diǎn),求相鄰兩個(gè)交點(diǎn)間的最短距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖⊙O1與⊙O2相交于A、B兩點(diǎn),過(guò)A點(diǎn)的直線分別與⊙O1、⊙O2相文于C、D兩點(diǎn),以C、D為切點(diǎn)分別作兩圓的切線相交于點(diǎn)E.
(Ⅰ)若EA的延長(zhǎng)線與⊙O1交于點(diǎn)M,證明切割線定理:EC2=EA•EM
(Ⅱ)證明:E、C、B、D四點(diǎn)共圓.

查看答案和解析>>

同步練習(xí)冊(cè)答案