【題目】已知定點A(﹣1,1),動點P在拋物線C:y2=﹣8x上,F(xiàn)為拋物線C的焦點.
(1)求|PA|+|PF|最小值;
(2)求以A為中點的弦所在的直線方程.

【答案】
(1)解:設(shè)拋物線C的準(zhǔn)線為l,所以l的方程為x=2,

設(shè)P到準(zhǔn)線的距離為d,垂足為E.由拋物線的定義知|PA|+|PF|=|PA|+|PE|,

當(dāng)A,P,E三點共線時最小,|PA|+|PF|最小值為3.


(2)解:設(shè)以A為中點的弦所在的直線交拋物線C于M(x1,y1),N(x2,y2)兩點,

所以x1+x2=﹣2,y1+y2=2,

又因為M,N在拋物線C上,

則有y12=﹣8x1,y22=﹣8x2,做差化簡得 kMN=﹣4

又直線MN過點A(﹣1,1),所以有y﹣1=﹣4(x+1),

即以A為中點的弦所在的直線方程為4x+y+3=0.


【解析】(1)利用拋物線的定義知|PA|+|PF|=|PA|+|PE|,當(dāng)A,P,E三點共線時最小,|PA|+|PF|取得最小值;(2)利用點差法,求斜率,即可求以A為中點的弦所在的直線方程.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=5x+b的圖象經(jīng)過第一、三、四象限,則實數(shù)b的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在R上的奇函數(shù)f(x),當(dāng)x>0時,f(x)=﹣x2+2x﹣3.
當(dāng)x∈[2,4]時,求f(x)的值域;
當(dāng)f(m)=6時,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y=loga(x﹣1)﹣1(a>0且a≠1)必過定點

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題p,q都是假命題,則下列命題為真命題的是(
A.p∨q
B.p∧q
C.(¬p)∧q
D.p∨(¬q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y=x2﹣2x+3,﹣1≤x≤2的值域是(
A.R
B.[3,6]
C.[2,6]
D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題p:c>0,方程x2﹣x+c=0 有解,則¬p為(
A.c>0,方程x2﹣x+c=0無解
B.c≤0,方程x2﹣x+c=0有解
C.c>0,方程x2﹣x+c=0無解
D.c<0,方程x2﹣x+c=0有解

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a<0,﹣1<b<0,則有(
A.ab2<ab<a
B.a<ab<ab2
C.ab>b>ab2
D.ab>ab2>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若兩個平面互相平行,則分別在這兩個平行平面內(nèi)的兩條直線( 。
A.平行
B.異面
C.相交
D.平行或異面

查看答案和解析>>

同步練習(xí)冊答案