已知函數(shù)是偶函數(shù),當時,恒成立,設,則的大小關系為(      )

A.         B.         C.        D.

 

【答案】

A

【解析】

試題分析:因為時,恒成立,所以f(x)在上是增函數(shù),又因為函數(shù)是偶函數(shù),所以函數(shù)f(x)關于直線x=2對稱,所以f(x)在上是減函數(shù),因為,所以f(6)>f(-1)>f(3),即b<a<c.

考點: 抽象函數(shù)的單調(diào)性與奇偶性,利用其比較數(shù)的大小.

點評:由時,恒成立, 確定f(x)在上是增函數(shù)是解題的關鍵,然后再根據(jù)函數(shù)是偶函數(shù),所以函數(shù)f(x)關于直線x=2對稱,f(x)在上是減函數(shù),從而轉(zhuǎn)化自變量與對稱軸x=2的距離大小的比較問題.

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2015屆云南省高一上學期期中考試數(shù)學試卷(解析版) 題型:解答題

已知函數(shù)是偶函數(shù),且時,。

(1)求當>0時的解析式;   (2) 設,證明:

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年湖北省襄樊四校高三期中考試文科數(shù)學試卷 題型:解答題

(本題14分)數(shù)列的首項

(1)求證是等比數(shù)列,并求的通項公式;

(2)已知函數(shù)是偶函數(shù),且對任意均有,當 時,,求使恒成立的的取值范圍。

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆廣東省高一上學期期末數(shù)學試卷 題型:解答題

已知函數(shù)是偶函數(shù),且時,.求

(1) 的值,

(2) 的值;

(3)當>0時,的解析式.

 

查看答案和解析>>

科目:高中數(shù)學 來源:期末題 題型:解答題

已知函數(shù)是偶函數(shù),a為實常數(shù).
(1)求b的值;
(2)當a=1時,是否存在m,n(n>m>0)使得函數(shù)y=f(x)在區(qū)間[m,n]上的函數(shù)值組成的集合也是[m,n],若存在,求出m,n的值,否則,說明理由;
(3)若在函數(shù)定義域內(nèi)總存在區(qū)間[m,n](m<n),使得y=f(x)在區(qū)間[m,n]上的函數(shù)值組成的集合也是[m,n],求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2011屆湖北省襄樊四校高三期中考試文科數(shù)學試卷 題型:解答題

(本題14分)數(shù)列的首項
(1)求證是等比數(shù)列,并求的通項公式;
(2)已知函數(shù)是偶函數(shù),且對任意均有,當 時,,求使恒成立的的取值范圍。

查看答案和解析>>

同步練習冊答案