已知tanα=2,tanβ=3,α∈(0,
π
2
)
β∈(π,
2
)
,則α+β=
4
4
分析:先利用正切的兩角和公式,把tanα和tanβ的值代入即可求得tan(α+β)的值,根據(jù)α+β的范圍求得答案.
解答:解:因為tanα=2,tanβ=3,α∈(0,
π
2
)
,β∈(π,
2
)
,
所以tan(α+β)=
tanα+tanβ
1-tanα•tanβ
=-1
0<α<
π
2
,π<β<
2

∵tanα=2>1,
π
4
α<
π
2
,tanβ=3,β∈(
4
2
)

2
<α+β<2π;
∴α+β=
4

故答案為:
4
點評:本題主要考查了正切函數(shù)的兩角和公式.解題的時候注意根據(jù)角的范圍判斷三角函數(shù)的正負值.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知橢圓的焦點為F1(-t,0),F(xiàn)2(t,0),(t>0),P為橢圓上一點,且|F1F2|是|PF1|,|PF2|的等差中項.
(1)求橢圓方程;
(2)如果點P在第二象限且∠PF1F2=1200,求tan∠F1PF2的值;
(3)設(shè)A是橢圓的右頂點,在橢圓上是否存在點M(不同于點A),使∠F1MA=90°,若存在,請求出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•湖北模擬)已知向量
a
=(2cosx,tan(x+α))
,
b
=(
2
sin(x+α),tan(x-α))
,已知角α(α∈(-
π
2
,
π
2
))
的終邊上一點P(-t,-t)(t≠0),記f(x)=
a
b

(1)求函數(shù)f(x)的最大值,最小正周期;
(2)作出函數(shù)f(x)在區(qū)間[0,π]上的圖象.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(1,2),
b
=(cosα,sinα)
,設(shè)
m
=
a
+t
b
(t為實數(shù)).
(1)若
a
b
共線,求tanα的值;
(2)若α=
π
4
,求當|
m
|取最小值時實數(shù)t的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知-π<x<π,t=tan.

(1)試用t表示sinx、cosx;

(2)設(shè)x1、x2為適合方程6sinx+5cosx=7的兩個不同的值.

求tan與tanx1·tanx2的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知-π<x<π,t=tan.

(1)試用t表示sinx、cosx;

(2)設(shè)x1、x2為適合方程6sinx+5cosx=7的兩個不同的值.

求tan與tanx1·tanx2的值.

查看答案和解析>>

同步練習冊答案