8.向量$\overrightarrow{a}$=(-1,3),$\overrightarrow$=(3,-4),則向量$\overrightarrow{a}$在向量$\overrightarrow$方向上的投影為-3.

分析 根據(jù)條件便可求出$|\overrightarrow|$,$\overrightarrow{a}•\overrightarrow$的值,從而根據(jù)投影的計(jì)算公式即可求出$\overrightarrow{a}$在$\overrightarrow$方向上投影的值.

解答 解:$|\overrightarrow|=5,\overrightarrow{a}•\overrightarrow=-3-12=-15$;
∴$\overrightarrow{a}$在$\overrightarrow$方向上的投影為:
$|\overrightarrow{a}|cos<\overrightarrow{a},\overrightarrow>=|\overrightarrow{a}|•\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow{a}||\overrightarrow|}$
=$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow|}$
=$\frac{-15}{5}$
=-3.
故答案為:-3.

點(diǎn)評(píng) 考查根據(jù)向量坐標(biāo)求向量長度的方法,以及向量數(shù)量積的計(jì)算公式,向量投影的計(jì)算公式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.設(shè)拋物線C:y2=2px(p>0)的焦點(diǎn)F,其準(zhǔn)線與x軸相交于點(diǎn)Q,過點(diǎn)F傾斜角為銳角θ的直線交拋物線于A,B兩點(diǎn),若∠QBF=90°,則cosθ=$\frac{\sqrt{5}-1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知拋物線y2=2px(p>0)上一點(diǎn)M(1,y)到焦點(diǎn)F的距離為$\frac{17}{16}$.
(1)求p的值;
(2)若圓(x-a)2+y2=1與拋物線C有公共點(diǎn),結(jié)合圖形求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)集合A={x|2m-1<x<m},集合B={x|-4≤x≤5}.
(Ⅰ)若m=-3,求A∪B;
(Ⅱ)若A∩B=∅,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知|$\overrightarrow{a}$|=4,|$\overrightarrow$|=3,|$\overrightarrow{a}$-$\overrightarrow$|=$\sqrt{37}$,則向量$\overrightarrow{a}$與$\overrightarrow$的夾角是( 。
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=$\frac{\sqrt{3}}{3}$[cos(2x+$\frac{π}{6}$)+4sinxcosx]+1,x∈R.
(1)求函數(shù)f(x)的最小正周期;
(2)令g(x)=af(x)+b,若函數(shù)g(x)在區(qū)間[-$\frac{π}{6}$,$\frac{π}{4}$]上的值域?yàn)閇-1.1],求a+b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知函數(shù)f(x)=$\left\{\begin{array}{l}{1,x∈Q}\\{0,x∈{∁}_{R}Q}\end{array}\right.$,則f(f(2π))=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在△ABC中,tanA=$\frac{1}{2}$,cosB=$\frac{3\sqrt{10}}{10}$,則tanC=( 。
A.-2B.1C.$\sqrt{3}$D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)命題p:?x∈R,x2-2x>a,其中a∈R,命題q:?x∈R,x2+2ax+2-a=0.如果“x2>1p”為假命題,“p∧q”為假命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案