甲、乙兩人約定在5:00到6:00見面,設(shè)甲到達的時間為x,乙到達的時間為y.要求甲先到,但甲等候乙最多15分鐘,過時即不再等了,
(1)若用點(x,y)表示他們見面的時間,畫出點(x,y)的區(qū)域;
(2)求他們能見到對方的概率.
分析:(1)根據(jù)題意,可得5≤x≤6,5≤y≤6,0<y-x≤
15
60
,將其聯(lián)立,用平面區(qū)域表示即可;
(2)由(1)的結(jié)論,易得區(qū)域的總面積與陰影部分面積,進而由幾何概型公式,計算可得答案.
解答:解:(1)根據(jù)題意,5≤x≤6,5≤y≤6,0<y-x≤
15
60
=0.25,
聯(lián)立可得
5≤x≤6
5≤y≤6
0<y-x≤0.25
,平面區(qū)域如右圖:
(2)由(1)的圖,
易得區(qū)域5≤x≤6且5≤y≤6的總面積1×1=1,
而陰影部分面積1-
1
2
-
1
2
×
3
4
×
3
4
=
7
32
,
所求概率P=
7
32
點評:本題考查幾何概型的計算與不等式組表示平面區(qū)域的方法,難點是把時間分別用x,y坐標(biāo)來表示,從而把時間長度這樣的一維問題轉(zhuǎn)化為平面圖形的二維面積問題,轉(zhuǎn)化成面積型的幾何概型問題
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

甲乙兩人約定在中午12點到下午5點之間在某地會面,先到者等一個小時后即離去,設(shè)兩人在這段時間內(nèi)的各時刻到達是等可能的,且二人互不影響,求二人能會面的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙兩人約定在下午4:00~5:00間在某地相見他們約好當(dāng)其中一人先到后一定要等另一人15分鐘,若另一人仍不到則可以離去,試求這人能相見的概率。

                

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙兩人約定在6時到7時之間在某處會面,并約定先到者等候另一個人一刻鐘,過時即可離去,求兩人能會面的概率.

    圖3-3-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008-2009學(xué)年安徽省安慶市潛山縣中學(xué)高一(下)期中數(shù)學(xué)試卷(解析版) 題型:解答題

甲、乙兩人約定在5:00到6:00見面,設(shè)甲到達的時間為x,乙到達的時間為y.要求甲先到,但甲等候乙最多15分鐘,過時即不再等了,
(1)若用點(x,y)表示他們見面的時間,畫出點(x,y)的區(qū)域;
(2)求他們能見到對方的概率.

查看答案和解析>>

同步練習(xí)冊答案