【題目】按照某學(xué)者的理論,假設(shè)一個(gè)人生產(chǎn)某產(chǎn)品單件成本為a元,如果他賣出該產(chǎn)品的單價(jià)為m元,則他的滿意度為 ;如果他買進(jìn)該產(chǎn)品的單價(jià)為n元,則他的滿意度為 .如果一個(gè)人對(duì)兩種交易(賣出或買進(jìn))的滿意度分別為h1和h2 , 則他對(duì)這兩種交易的綜合滿意度為 .現(xiàn)假設(shè)甲生產(chǎn)A、B兩種產(chǎn)品的單件成本分別為12元和5元,乙生產(chǎn)A、B兩種產(chǎn)品的單件成本分別為3元和20元,設(shè)產(chǎn)品A、B的單價(jià)分別為mAm元和mB元,甲買進(jìn)A與賣出B的綜合滿意度為h , 乙賣出A與買進(jìn)B的綜合滿意度為h
(1)求h和h關(guān)于mA、mB的表達(dá)式;當(dāng)mA= mB時(shí),求證:h=h;
(2)設(shè)mA= mB , 當(dāng)mA、mB分別為多少時(shí),甲、乙兩人的綜合滿意度均最大?最大的綜合滿意度為多少?

【答案】
(1)解:h= ,h= ,mA∈[3,12],mB∈[5,20]

當(dāng)mA= mB時(shí),h= ,h= ,

∴h=h


(2)解:當(dāng)mA= mB時(shí),h= = ,

由mB∈[5,20]得 ∈[ , ],故當(dāng) =

即mB=20,mA=12時(shí),甲乙兩人同時(shí)取到最大的綜合滿意度為


【解析】(1)表示出甲和乙的滿意度,整理出最簡(jiǎn)形式,在條件mA= mB時(shí),表示出要證明的相等的兩個(gè)式子,得到兩個(gè)式子相等.(2)在上一問表示出的結(jié)果中,整理出關(guān)于變量的符合基本不等式的形式,利用基本不等式求出兩個(gè)人滿意度最大時(shí)的結(jié)果,并且寫出等號(hào)成立的條件.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)= (其中常數(shù)a>0,且a≠1).
(1)當(dāng)a=10時(shí),解關(guān)于x的方程f(x)=m(其中常數(shù)m>2 );
(2)若函數(shù)f(x)在(﹣∞,2]上的最小值是一個(gè)與a無關(guān)的常數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)= 為奇函數(shù),a為常數(shù).
(1)求a的值;并判斷f(x)在區(qū)間(1,+∞)上的單調(diào)性;
(2)若對(duì)于區(qū)間(3,4)上的每一個(gè)x的值,不等式f(x)> 恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱中, , , 分別為棱的中點(diǎn).

(1)在平面內(nèi)過點(diǎn)平面于點(diǎn),并寫出作圖步驟,但不要求證明.

(2)若側(cè)面側(cè)面,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直三棱柱中, , ,外接球的球心為,點(diǎn)是側(cè)棱上的一個(gè)動(dòng)點(diǎn).有下列判斷:

① 直線與直線是異面直線;② 一定不垂直;

③ 三棱錐的體積為定值; ④的最小值為.

其中正確的個(gè)數(shù)是

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在幾何體中,四邊形是矩形, 平面, . 分別是線段的中點(diǎn).

(Ⅰ)求證: 平面

(Ⅱ)求與平面所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】共享單車是指企業(yè)在校園、地鐵站點(diǎn)、公交站點(diǎn)、居民區(qū)、商業(yè)區(qū)、公共服務(wù)區(qū)等提供自行車單車共享服務(wù),是共享經(jīng)濟(jì)的一種新形態(tài).一個(gè)共享單車企業(yè)在某個(gè)城市就“一天中一輛單車的平均成本(單位:元)與租用單車的數(shù)量(單位:千輛)之間的關(guān)系”進(jìn)行調(diào)查研究,在調(diào)查過程中進(jìn)行了統(tǒng)計(jì),得出相關(guān)數(shù)據(jù)見下表:

租用單車數(shù)量(千輛)

2

3

4

5

8

每天一輛車平均成本(元)

3.2

2.4

2

1.9

1.7

根據(jù)以上數(shù)據(jù),研究人員分別借助甲、乙兩種不同的回歸模型,得到兩個(gè)回歸方程,方程甲: ,方程乙: .

(1)為了評(píng)價(jià)兩種模型的擬合效果,完成以下任務(wù):

①完成下表(計(jì)算結(jié)果精確到0.1)(備注: ,稱為相應(yīng)于點(diǎn)的殘差(也叫隨機(jī)誤差));

租用單車數(shù)量 (千輛)

2

3

4

5

8

每天一輛車平均成本 (元)

3.2

2.4

2

1.9

1.7

模型甲

估計(jì)值

2.4

2.1

1.6

殘差

0

-0.1

0.1

模型乙

估計(jì)值

2.3

2

1.9

殘差

0.1

0

0

②分別計(jì)算模型甲與模型乙的殘差平方和,并通過比較的大小,判斷哪個(gè)模型擬合效果更好.

(2)這個(gè)公司在該城市投放共享單車后,受到廣大市民的熱烈歡迎,共享單車常常供不應(yīng)求,于是該公司研究是否增加投放.根據(jù)市場(chǎng)調(diào)查,這個(gè)城市投放8千輛時(shí),該公司平均一輛單車一天能收入10元,6元收入的概率分別為0.6,0.4;投放1萬輛時(shí),該公司平均一輛單車一天能收入10元,6元收入的概率分別為0.4,0.6.問該公司應(yīng)該投放8千輛還是1萬輛能獲得更多利潤(rùn)?(按(1)中擬合效果較好的模型計(jì)算一天中一輛單車的平均成本,利潤(rùn)=收入-成本).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=
(1)解不等式f(x)< ;
(2)求函數(shù)f(x)值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某機(jī)構(gòu)為了解某地區(qū)中學(xué)生在校月消費(fèi)情況,隨機(jī)抽取了100名中學(xué)生進(jìn)行調(diào)查.如圖是根據(jù)調(diào)查的結(jié)果繪制的學(xué)生在校月消費(fèi)金額的頻率分布直方圖.已知[350,450),[450,550),[550,650)三個(gè)金額段的學(xué)生人數(shù)成等差數(shù)列,將月消費(fèi)金額不低于550元的學(xué)生稱為“高消費(fèi)群”.

(1)求m,n的值,并求這100名學(xué)生月消費(fèi)金額的樣本平均數(shù) (同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(2)根據(jù)已知條件完成下面2×2列聯(lián)表,并判斷能否有90%的把握認(rèn)為“高消費(fèi)群”與性別有關(guān)?

高消費(fèi)群

非高消費(fèi)群

合計(jì)

10

50

合計(jì)

(參考公式: ,其中n=a+b+c+d)

P(K2≥k)

0.10

0.05

0.025

0.010

0.005

0.001

k

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步練習(xí)冊(cè)答案