A. | 1 | B. | $\frac{1}{2}$ | C. | $\frac{4}{5}$ | D. | $\frac{3}{4}$ |
分析 根據(jù)題意表示出直線方程,代入拋物線方程消去x,利用求根公式求出B,C的縱坐標,利用|AB|=$\frac{1}{3}$|BC|,建立等式,把A,B的縱坐標帶入即可求得k.
解答 解:依題意知直線方程為y=k(x+1),代入拋物線方程,整理得ky2-4y+4k=0,
解得yB=$\frac{2-2\sqrt{1-{k}^{2}}}{k}$,yC=$\frac{2+2\sqrt{1-{k}^{2}}}{k}$,
∵|AB|=$\frac{1}{3}$|BC|,∴yB=$\frac{1}{4}$yC,
∴$\frac{2-2\sqrt{1-{k}^{2}}}{k}$=$\frac{1}{4}$•$\frac{2+2\sqrt{1-{k}^{2}}}{k}$,
∵k>0,∴求得k=$\frac{4}{5}$.
故選:C.
點評 本題主要考查了直線與拋物線的位置關(guān)系.一般解法是設(shè)出直線方程,與拋物線方程聯(lián)立進行消元,利用轉(zhuǎn)化為一元二次方程的問題進行解決.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分而不必要條件 | B. | 必要而不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{2}}{3}$ | B. | -$\frac{1}{3}$ | C. | $\frac{1}{3}$ | D. | ±$\frac{2\sqrt{2}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com