5.已知sin($\frac{π}{2}$+θ)=$\frac{1}{3}$,則2sin2$\frac{θ}{2}$-1等于(  )
A.$\frac{\sqrt{2}}{3}$B.-$\frac{1}{3}$C.$\frac{1}{3}$D.±$\frac{2\sqrt{2}}{3}$

分析 利用誘導(dǎo)公式及二倍角公式即可計(jì)算求值.

解答 解:∵sin($\frac{π}{2}$+θ)=cosθ=$\frac{1}{3}$,
∴2sin2$\frac{θ}{2}$-1=-(1-2sin2$\frac{θ}{2}$)=-cosθ=-$\frac{1}{3}$.
故選:B.

點(diǎn)評 本題主要考查了誘導(dǎo)公式及二倍角公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知a=0.2-0.2,b=log0.52,c=$\frac{\root{3}{2}}{2}$,則a,b,c的大小關(guān)系正確的是( 。
A.a<b<cB.b<c<aC.c<b<aD.c<a<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.下列各函數(shù)中,圖象完全相同的是( 。
A.y=2lgx和y=lgx2B.y=$\frac{|x-1|}{x-1}$和y=$\left\{\begin{array}{l}{-1,x∈(-∞,1)}\\{1,x∈(1,+∞)}\end{array}\right.$
C.y=$\frac{{x}^{2}}{x}$和y=xD.y=x-3和y=$\sqrt{(x-3)^{2}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知α是第三象限角,f(α)=$\frac{sin(\frac{3π}{2}-α)cos(\frac{π}{2}+α)tan(-α+π)}{tan(α-2π)sin(-α-π)}$.
(1)化簡f(α);
(2)若cos($α-\frac{3π}{2}$)=$\frac{1}{5}$,求f(α).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.過點(diǎn)A(-1,0)且斜率為k(k>0)的直線與拋物線y2=4x相交于B,C兩點(diǎn),若|AB|=$\frac{1}{3}$|BC|,則k等于(  )
A.1B.$\frac{1}{2}$C.$\frac{4}{5}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.O是平面α上一點(diǎn),A、B、C是平面α上不共線三點(diǎn),平面α內(nèi)的動(dòng)點(diǎn)P滿足$\overrightarrow{OP}=\overrightarrow{OA}+λ(\overrightarrow{AB}+\overrightarrow{AC})$,
(1)若$λ=\frac{1}{2}$時(shí),$\overrightarrow{PA}•(\overrightarrow{PB}+\overrightarrow{PC})$的值.
(2)若AB=1,AC=2,$\overrightarrow{AP}•\overrightarrow{BC}$=1,求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知α是銳角,且sinα=$\frac{\sqrt{6}-\sqrt{2}}{4}$,則cosα=$\frac{\sqrt{6}+\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知等邊圓柱(軸截面是正方形的圓柱)的全面積為S,求其內(nèi)接正四棱柱的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若一個(gè)空間幾何體的三個(gè)視圖都是直角邊長為1的等腰直角三角形,則這個(gè)空間幾何體的外接球的表面積和內(nèi)切球的表面積之比是( 。
A.$\frac{18+9\sqrt{3}}{2}$B.18+9$\sqrt{3}$C.3D.9

查看答案和解析>>

同步練習(xí)冊答案