如圖,四面體ABCD中,△ABC與△DBC都是邊長(zhǎng)為4的正三角形.
(1)求證:BC⊥AD;
(2)試問(wèn)該四面體的體積是否存在最大值?若存在,求出這個(gè)最大值及此時(shí)棱長(zhǎng)AD的大。蝗舨淮嬖,請(qǐng)說(shuō)明理由.
(1)見(jiàn)解析(2)最大值為8,此時(shí)棱長(zhǎng)AD=2.
【解析】(1)證明:取BC的中點(diǎn)E,連結(jié)AE,DE,
∵△ABC與△DBC都是邊長(zhǎng)為4的正三角形,
∴AE⊥BC,DE⊥BC.
∵AE∩DE=E,
∴BC⊥平面AED,AD?平面AED,∴BC⊥AD.
(2)由已知得,△AED為等腰三角形,且AE=ED=2,
設(shè)AD=x,F為棱AD的中點(diǎn),
則EF= ,S△AED=,
V=S△AED·(BE+CE)= (0<x<4),
當(dāng)x2=24,即x=2時(shí),Vmax=8,
∴該四面體存在最大值,最大值為8,此時(shí)棱長(zhǎng)AD=2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(文)二輪專(zhuān)題復(fù)習(xí)與測(cè)試選擇填空限時(shí)訓(xùn)練1練習(xí)卷(解析版) 題型:選擇題
在△ABC中,D為邊BC上任意一點(diǎn),=λ+μ,則λμ的最大值為( )
A.1 B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(文)二輪專(zhuān)題復(fù)習(xí)與測(cè)試專(zhuān)題5第2課時(shí)練習(xí)卷(解析版) 題型:選擇題
已知方程=1表示焦點(diǎn)在y軸上的橢圓,則實(shí)數(shù)k的取值范圍是( )
A. B.(1,+∞) C.(1,2) D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(文)二輪專(zhuān)題復(fù)習(xí)與測(cè)試專(zhuān)題4第2課時(shí)練習(xí)卷(解析版) 題型:解答題
如圖,點(diǎn)C是以AB為直徑的圓上的一點(diǎn),直角梯形BCDE所在平面與圓O所在平面垂直,且DE∥BC,DC⊥BC,DE=BC.
(1)證明:EO∥平面ACD;
(2)證明:平面ACD⊥平面BCDE.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(文)二輪專(zhuān)題復(fù)習(xí)與測(cè)試專(zhuān)題4第2課時(shí)練習(xí)卷(解析版) 題型:選擇題
已知m,n是兩條不同直線(xiàn),α,β,γ是三個(gè)不同平面,下列命題中正確的有( )
A.若m∥α,n∥α,則m∥n B.若α⊥γ,β⊥γ,則α∥β
C.若m∥α,m∥β,則α∥β D.若m⊥α,n⊥α,則m∥n
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(文)二輪專(zhuān)題復(fù)習(xí)與測(cè)試專(zhuān)題4第1課時(shí)練習(xí)卷(解析版) 題型:填空題
如圖,水平放置的三棱柱的側(cè)棱長(zhǎng)和底面邊長(zhǎng)均為2,且側(cè)棱AA1⊥底面A1B1C1,正(主)視圖是邊長(zhǎng)為2的正方形,則該三棱柱的側(cè)(左)視圖的面積為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(文)二輪專(zhuān)題復(fù)習(xí)與測(cè)試專(zhuān)題3第3課時(shí)練習(xí)卷(解析版) 題型:解答題
已知數(shù)列{an}中,a1=1,an+1= (n∈N*).
(1)求數(shù)列{an}的通項(xiàng)an;
(2)若數(shù)列{bn}滿(mǎn)足bn=(3n-1)an,數(shù)列{bn}的前n項(xiàng)和為Tn,若不等式(-1)nλ<Tn對(duì)一切n∈N*恒成立,求λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(文)二輪專(zhuān)題復(fù)習(xí)與測(cè)試專(zhuān)題3第1課時(shí)練習(xí)卷(解析版) 題型:解答題
某同學(xué)在一次研究性學(xué)習(xí)中發(fā)現(xiàn),以下五個(gè)式子的值都等于同一個(gè)常數(shù):
①sin213°+cos217°-sin 13°cos 17°;
②sin215°+cos215°-sin 15°cos 15°;
③sin218°+cos212°-sin 18°cos 12°;
④sin2(-18°)+cos248°-sin(-18°)cos 48°;
⑤sin2(-25°)+cos255°-sin(-25°)cos 55°.
(1)試從上述五個(gè)式子中選擇一個(gè),求出這個(gè)常數(shù);
(2)根據(jù)(1)的計(jì)算結(jié)果,將該同學(xué)的發(fā)現(xiàn)推廣為三角恒等式,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(文)二輪專(zhuān)題復(fù)習(xí)與測(cè)試專(zhuān)題2第2課時(shí)練習(xí)卷(解析版) 題型:選擇題
在△ABC中,若0<tan A·tan B<1,那么 △ABC一定是( )
A.銳角三角形 B.鈍角三角形 C.直角三角形 D.形狀不確定
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com