在等差數(shù)列{an}中,若a1+a7+a8+a12=12,則此數(shù)列的前13項的和為________.

39
分析:將a1+a7+a8+a12用a1和d表示,再將s13用a1和d表示,從中尋找關(guān)系即可解決此數(shù)列的前13項的和問題.
解答:設(shè)等差數(shù)列{an}的公差為d,
∵a1+a7+a8+a12=a1+a1+6d+a1+7d+a1+11d=4a1+24d=12,
∴a1+6d=3,
∴s13=13a1+d=13(a1+6d)=39,
故答案為:39.
點評:此題考查學(xué)生掌握等差數(shù)列的性質(zhì),靈活運(yùn)用等差數(shù)列的通項公式及前n項和的公式化簡求值,是一道基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,a1=-2010,其前n項的和為Sn.若
S2010
2010
-
S2008
2008
=2,則S2010=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,a1+3a8+a15=60,則2a9-a10的值為
12
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在等差數(shù)列{an}中,d>0,a2008、a2009是方程x2-3x-5=0的兩個根,那么使得前n項和Sn為負(fù)值的最大的n的值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,已知a1=2,a2+a3=13,則a4+a5+a6等于=
42
42

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,若S4=1,S8=4,則a17+a18+a19+a20的值=
9
9

查看答案和解析>>

同步練習(xí)冊答案