定義在實(shí)數(shù)集上的函數(shù)f(x)對(duì)任意x,y∈R,有f(x+y)+f(x-y)=2f(x)•f(y),且f(0)≠0,
(1)求證:f(0)=1
(2)求證:y=f(x)是偶函數(shù).
【答案】分析:本題考查的是抽象函數(shù)及其應(yīng)用類(lèi)問(wèn)題.在解答時(shí):
(1)在抽象表達(dá)式中令x=y=0代入表達(dá)式即可獲得問(wèn)題的解答;
(2)在抽象表達(dá)式中令x=0,y不動(dòng),結(jié)合(1)的結(jié)論即可獲得f(-y)與f(y)之間的關(guān)系,從而獲得函數(shù)的奇偶性.
解答:解:(1)令x=y=0則有f(0)+f(0)=2f(0)f(0)2f(0)=f(0)f(0),
因?yàn)閒(0)≠0,
所以f(0)=1.
(2)令x=0
則有f(y)+f(-y)=2f(0)f(y),
∴f(-y)=f(y),
所以y=f(x)是偶函數(shù).
點(diǎn)評(píng):本題考查的是抽象函數(shù)及其應(yīng)用類(lèi)問(wèn)題.在解答的過(guò)程當(dāng)中充分體現(xiàn)了抽象表達(dá)式的應(yīng)用能力、特值的問(wèn)題處理技巧以及必要的計(jì)算能力.同時(shí)函數(shù)的奇偶性定義也在題目中得到了體現(xiàn).值得同學(xué)們體會(huì)和反思.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在實(shí)數(shù)集上的函數(shù)f(x),如果存在函數(shù)g(x)=Ax+B(A,B為常數(shù)),使得f(x)≥g(x)對(duì)于一切實(shí)數(shù)都成立,那么稱g(x)為函數(shù)f(x)的一個(gè)承托函數(shù).給出如下命題:
①對(duì)給定的函數(shù)f(x),其承托函數(shù)可能不存在,也可能有無(wú)數(shù)個(gè);
②定義域和值域都是R的函數(shù)f(x)不存在承托函數(shù);
③g(x)=2x為函數(shù)f(x)=ex的一個(gè)承托函數(shù);
④g(x)=
1
2
x
為函數(shù)f(x)=x2的一個(gè)承托函數(shù).
其中,正確的命題個(gè)數(shù)是(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在實(shí)數(shù)集上的函數(shù)fn(x)=xn,(x∈N*),其導(dǎo)函數(shù)記為fn′(x),且滿足fn′[ax1+(1-a)x2]  =
f2(x2)-f2(x1x2-x1
,其中a,x1,x2為常數(shù),x1≠x2.設(shè)函數(shù)g(x)=f1(x)+mf2(x)-lnf3(x),(m∈R且m≠0).
(Ⅰ)求實(shí)數(shù)a的值;
(Ⅱ)若函數(shù)g(x)無(wú)極值點(diǎn),其導(dǎo)函數(shù)g′(x)有零點(diǎn),求m的值;
(Ⅲ)求函數(shù)g(x)在x∈[0,a]的圖象上任一點(diǎn)處的切線斜率k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在實(shí)數(shù)集上的函數(shù)f(x)滿足xf(x)為偶函數(shù),f(x+2)=-f(x),(x∈R) 且當(dāng)1≤x≤3時(shí),f(x)=(2-x)3
(1)求-1≤x≤0時(shí),函數(shù)f(x)的解析式.
(2)求f(2008)、f(2008.5)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在實(shí)數(shù)集上的函數(shù)f(x)滿足f(x+1)=
x
2
+2,則f-1(x+1)的表達(dá)式是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在實(shí)數(shù)集上的函數(shù)y=f(x)滿足:
(1)對(duì)任意的x,y∈R,f(x+y)=2f(x)•f(y),(2)f(0)=
12

請(qǐng)寫(xiě)出滿足上述條件(1)和(2)的一個(gè)函數(shù)
f(x)=2x-1或2-x-1
f(x)=2x-1或2-x-1
(寫(xiě)出一個(gè)即可)

查看答案和解析>>

同步練習(xí)冊(cè)答案