x | -1 | 0 | 4 | 5 |
f(x) | 1 | 2 | 2 | 1 |
A. | 4個 | B. | 3個 | C. | 2個 | D. | 1個 |
分析 先由導(dǎo)函數(shù)的圖象和原函數(shù)的關(guān)系畫出原函數(shù)的大致圖象,再借助與圖象和導(dǎo)函數(shù)的圖象,對四個命題,一一進行驗證,對于假命題采用舉反例的方法進行排除即可得到答案.
解答 解:由導(dǎo)函數(shù)的圖象和原函數(shù)的關(guān)系得,原函數(shù)的大致圖象如圖:
由圖得:①為假命題;
②為真命題.因為在[0,2]上導(dǎo)函數(shù)為負,故原函數(shù)遞減;
由已知中y=f′(x)的圖象,及表中數(shù)據(jù)可得當x=0或x=4時,函數(shù)取最大值2,
若x∈[-1,t]時,f(x)的最大值是2,那么0≤t≤5,故t的最大值為5,即③錯誤
∵函數(shù)f(x)在定義域為[-1,5]共有兩個單調(diào)增區(qū)間,兩個單調(diào)減區(qū)間,
故函數(shù)y=f(x)-a的零點個數(shù)可能為0、1、2、3、4個,即④錯誤,
故選:D.
點評 本題主要考查導(dǎo)函數(shù)和原函數(shù)的單調(diào)性之間的關(guān)系.二者之間的關(guān)系是:導(dǎo)函數(shù)為正,原函數(shù)遞增;導(dǎo)函數(shù)為負,原函數(shù)遞減.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $λ>-\frac{1}{2}$ | B. | $λ<-\frac{1}{2}$ | C. | λ>-$\frac{1}{2}$且λ≠2 | D. | λ<-$\frac{1}{2}$且λ≠2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2n+1-2 | B. | 2n-1 | C. | 2n+1-1 | D. | 2n-2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com