9.已知點(diǎn)P(1,2)及圓C:x2+y2+4x-12y+24=0.若直線l過點(diǎn)P且被圓C截得的線段長為2$\sqrt{7}$,求l的方程.

分析 將圓的方程化為標(biāo)準(zhǔn)方程,找出圓心C坐標(biāo)與半徑r,根據(jù)題意畫出相應(yīng)的圖形,取AB的中點(diǎn)為D,連接CD,可得出CD垂直于AB,得出|AD|與|AC|的長,利用勾股定理求出|CD|的長,然后分兩種情況考慮:(i)直線l斜率存在時(shí),設(shè)斜率為k,表示出l方程,由C到l的距離為3,利用點(diǎn)到直線的距離公式求出k的值,確定出此時(shí)l的方程;(ii)當(dāng)直線l的斜率不存在時(shí),直線x=0滿足題意,綜上,得到所求的直線方程.

解答 解:圓的方程可化為:(x+2)2+(y-6)2=16,
∴圓心C坐標(biāo)為(-2,6),半徑r=4,
如圖所示,|AB|=2$\sqrt{7}$,設(shè)D是線段AB的中點(diǎn),則CD⊥AB,
∴|AD|=$\sqrt{7}$,
又∵|AC|=4.
故在Rt△ACD中,可得|CD|=3…(5分)
∴當(dāng)直線l的斜率不存在時(shí),滿足題意,此時(shí)方程為x=1.
當(dāng)直線l的斜率存在時(shí),設(shè)所求直線l的斜率為k,則直線l的方程為:y-2=k(x-1),
由點(diǎn)C到直線AB的距離公式:$\frac{|-2k-6-k+2|}{\sqrt{{k}^{2}+1}}$=3,得k=-$\frac{7}{24}$.
此時(shí),直線l的方程為7x+24y-41=0…(11分)
∴所求直線l的方程為x=1或37x+24y-41=0…(12分)

點(diǎn)評(píng) 此題考查了直線與圓的位置關(guān)系,涉及的知識(shí)有:垂徑定理,勾股定理,點(diǎn)到直線的距離公式,利用了數(shù)形結(jié)合及分類討論的思想,是一道綜合性較強(qiáng)的試題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知一個(gè)圓C經(jīng)過兩個(gè)點(diǎn)A(6,-2),B(-1,5),且圓心在直線l:x-2y+1=0上,求此圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知-1<a<b<2,則2a-b的范圍是(-4,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知A={x|a<x<3+a},B={x|x≤-1或x≥1};
(1)若A∪B=R,求實(shí)數(shù)a的取值范圍;
(2)若A⊆B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若變量x,y滿足$\left\{\begin{array}{l}{x+y-3≥0}\\{x-2y-4≤0}\\{x-4y+4≥0}\end{array}\right.$,則z=x-y的最大值為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知函數(shù)f(x)是定義在R上的不恒為零的函數(shù),且對(duì)于任意實(shí)數(shù)x,y滿足:f(2)=2,f(xy)=xf(y)+yf(x),an=$\frac{f({2}^{n})}{{2}^{n}}$(n∈N*),bn=$\frac{f({2}^{n})}{n}$(n∈N*),考查下列結(jié)論:
①f(1)=1;②f(x)為奇函數(shù);③數(shù)列{an}為等差數(shù)列;④數(shù)列{bn}為等比數(shù)列.
以上命題正確的是②③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)向量$\overrightarrow{a}$,$\overrightarrow$不平行,若向量λ$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$-2$\overrightarrow$平行,則實(shí)數(shù)λ的值為-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若a<b<0,則( 。
A.a2<ab<b2B.ac<bcC.$\frac{1}{a}>\frac{1}$D.$\frac{a}{c^2}>\frac{c^2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.樹德中學(xué)的機(jī)器人代表隊(duì)在剛結(jié)束的全國總決賽中脫穎而出,取得控制獎(jiǎng)全國第一的驕人成績,該代表隊(duì)由高二的三名男生和一名女生以及高一的兩名男生組成
(1)在賽后的頒獎(jiǎng)典禮上,這六位同學(xué)排成一排拍照留念,要求女生不站兩邊,且高一的兩名男生不相鄰,則這樣的排法有多少種?
(2)在賽前的宣傳活動(dòng)中,主辦方準(zhǔn)備將5份不同的宣傳資料全部分發(fā)給高二的三名男生,則這三個(gè)男生每人至少拿到一份的概率為多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案