1.已知某批零件的長度誤差(單位:毫米)服從正態(tài)分布N(0,32),從中隨機抽取一件,其長度誤差落在區(qū)間(3,6)內(nèi)的概率為( 。
(附:若隨機變量ξ服從正態(tài)分布N(μ,σ2),則P(μ-σ<ξ<μ+σ)=68.26%,P(μ-2σ<ξ<μ+2σ)=95.44%)
A.4.56%B.13.59%C.27.18%D.31.74%

分析 由題意P(-3<ξ<3)=68.26%,P(-6<ξ<6)=95.44%,可得P(3<ξ<6)=$\frac{1}{2}$(95.44%-68.26%),即可得出結(jié)論.

解答 解:由題意P(-3<ξ<3)=68.26%,P(-6<ξ<6)=95.44%,
所以P(3<ξ<6)=$\frac{1}{2}$(95.44%-68.26%)=13.59%.
故選:B.

點評 本題考查正態(tài)分布曲線的特點及曲線所表示的意義,考查正態(tài)分布中兩個量μ和σ的應(yīng)用,考查曲線的對稱性,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知圓C:x2+y2-2x+y+m=0關(guān)于直線l:x+2y-1=0對稱的圓為C′,若圓C′與圓C恒有公共點,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率e=$\frac{\sqrt{2}}{2}$,右焦點、下頂點、左頂點分別為F2,B,A,AB=$\sqrt{3}$,直線l交橢圓C與P,Q兩點,直線AP與BQ交于點M.
(1)求a,b的值;
(2)當(dāng)BP過點F2時,求過A,B,P三點的圓的方程;
(3)當(dāng)$\frac{AM}{MP}$=$\frac{BM}{MQ}$時,求F2M的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{3x-b,x<1}\\{{2}^{x},x≥1}\end{array}\right.$,若f(f($\frac{5}{6}$))=4,則b=( 。
A.1B.$\frac{7}{8}$C.$\frac{3}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知集合A={x|x2-4x+3<0},B={x|2<x<4},則A∩B=(  )
A.(1,3)B.(1,4)C.(2,3)D.(2,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)集合A={x|(x+1)(x-2)<0},集合B={x|1<x<3},則A∪B=(  )
A.{x|-1<x<3}B.{x|-1<x<1}C.{x|1<x<2}D.{x|2<x<3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.如果函數(shù)f(x)=$\frac{1}{2}$(m-2)x2+(n-8)x+1(m≥0,n≥0)在區(qū)間[$\frac{1}{2},2$]上單調(diào)遞減,那么mn的最大值為(  )
A.16B.18C.25D.$\frac{81}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè){an}是等差數(shù)列,下列結(jié)論中正確的是( 。
A.若a1+a2>0,則a2+a3>0B.若a1+a3<0,則a1+a2<0
C.若0<a1<a2,則a2$>\sqrt{{a}_{1}{a}_{3}}$D.若a1<0,則(a2-a1)(a2-a3)>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.函數(shù)f(x)=ax3+bx2+cx+d的圖象如圖所示,則下列結(jié)論成立的是(  )
A.a>0,b<0,c>0,d>0B.a>0,b<0,c<0,d>0C.a<0,b<0,c<0,d>0D.a>0,b>0,c>0,d<0

查看答案和解析>>

同步練習(xí)冊答案