直線(xiàn)和圓錐曲線(xiàn)的位置關(guān)系問(wèn)題是幾何中最常見(jiàn)的問(wèn)題,對(duì)于普通方程,可以把它們的方程聯(lián)立,根據(jù)方程組解的情況來(lái)判斷交點(diǎn)情況.那么對(duì)于參數(shù)方程,又該如何判斷它們的交點(diǎn)情況呢?

探究:對(duì)于直線(xiàn)的普通方程可以把直線(xiàn)方程與圓錐曲線(xiàn)方程聯(lián)立消去一個(gè)變量后,根據(jù)方程解的情況來(lái)判斷直線(xiàn)和圓錐曲線(xiàn)的交點(diǎn)情況,對(duì)于直線(xiàn)的參數(shù)方程可以把參數(shù)坐標(biāo)的橫坐標(biāo)和縱坐標(biāo)直接代入圓錐曲線(xiàn)方程,得到關(guān)于參數(shù)t的方程,判斷方程的解的情況即可得到直線(xiàn)與圓錐曲線(xiàn)的交點(diǎn)情況.

另外,由于直線(xiàn)的參數(shù)方程尤其是標(biāo)準(zhǔn)式的參數(shù)方程,根據(jù)方程容易畫(huà)出相應(yīng)的直線(xiàn).所以,也可以根據(jù)方程畫(huà)出相應(yīng)的圖形,采用數(shù)形結(jié)合來(lái)判斷交點(diǎn)情況.當(dāng)然有些問(wèn)題也可以把直線(xiàn)的參數(shù)方程轉(zhuǎn)化為普通方程來(lái)解.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)圓錐曲線(xiàn)上任意兩點(diǎn)連成的線(xiàn)段稱(chēng)為弦.若圓錐曲線(xiàn)上的一條弦垂直于其對(duì)稱(chēng)軸,我們將該弦稱(chēng)之為曲線(xiàn)的垂軸弦.已知點(diǎn)P(x0,y0)、M(m,n)是圓錐曲線(xiàn)C上不與頂點(diǎn)重合的任意兩點(diǎn),MN是垂直于x軸的一條垂軸弦,直線(xiàn)MP、NP分別交x軸于點(diǎn)E(xE,0)和點(diǎn)F(xF,0).
(1)試用x0,y0,m,n的代數(shù)式分別表示xE和xF;
(2)若C的方程為
x2
a2
+
y2
b2
=1(a>b>0)
(如圖),求證:xE•xF是與MN和點(diǎn)P位置無(wú)關(guān)的定值;
(3)請(qǐng)選定一條除橢圓外的圓錐曲線(xiàn)C,試探究xE和xF經(jīng)過(guò)某種四則運(yùn)算(加、減、乘、除),其結(jié)果是否是與MN和點(diǎn)P位置無(wú)關(guān)的定值,寫(xiě)出你的研究結(jié)論并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

圓錐曲線(xiàn)上任意兩點(diǎn)連成的線(xiàn)段稱(chēng)為弦.若圓錐曲線(xiàn)上的一條弦垂直于其對(duì)稱(chēng)軸,我們將該弦稱(chēng)之為曲線(xiàn)的垂軸弦.已知點(diǎn)P(
x0,y0)、M(m,n)是圓錐曲線(xiàn)C上不與頂點(diǎn)重合的任意兩點(diǎn),MN是垂直于x軸的一條垂軸弦,直線(xiàn)MP,NP分別交x軸于點(diǎn)E(xE,0)和點(diǎn)F(xF,0).
(Ⅰ)試用x0,y0,m,n的代數(shù)式分別表示xE和xF
(Ⅱ)已知“若點(diǎn)P(x0,y0)是圓C:x2+y2=R2上的任意一點(diǎn)(
x0•y0≠0),MN是垂直于x軸的垂軸弦,直線(xiàn)MP、NP分別交x軸于點(diǎn)E(xE,0)和點(diǎn)F(xF,0),則xExF=R2”.類(lèi)比這一結(jié)論,我們猜想:“若曲線(xiàn)C的方程為
x2
a2
+
y2
b2
=1(a>b>0)
(如圖),則xE•xF也是與點(diǎn)M、N、P位置無(wú)關(guān)的定值”,請(qǐng)你對(duì)該猜想給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年上海市徐匯區(qū)高三上學(xué)期期末理科數(shù)學(xué)卷 題型:解答題

圓錐曲線(xiàn)上任意兩點(diǎn)連成的線(xiàn)段稱(chēng)為弦。若圓錐曲線(xiàn)上的一條弦垂直于其對(duì)稱(chēng)軸,我們將該弦稱(chēng)之為曲線(xiàn)的垂軸弦。已知點(diǎn)、是圓錐曲線(xiàn)C上不與頂點(diǎn)重合的任意兩點(diǎn),是垂直于軸的一條垂軸弦,直線(xiàn)分別交軸于點(diǎn)和點(diǎn)。

(1)試用的代數(shù)式分別表示;

(2)若C的方程為(如圖),求證:是與和點(diǎn)位置無(wú)關(guān)的定值;

(3)請(qǐng)選定一條除橢圓外的圓錐曲線(xiàn)C,試探究經(jīng)過(guò)某種四則運(yùn)算(加、減、乘、除),其結(jié)果是否是與和點(diǎn)位置無(wú)關(guān)的定值,寫(xiě)出你的研究結(jié)論并證明。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江蘇省鎮(zhèn)江市揚(yáng)中二中高三(上)期末數(shù)學(xué)模擬試卷(解析版) 題型:解答題

圓錐曲線(xiàn)上任意兩點(diǎn)連成的線(xiàn)段稱(chēng)為弦.若圓錐曲線(xiàn)上的一條弦垂直于其對(duì)稱(chēng)軸,我們將該弦稱(chēng)之為曲線(xiàn)的垂軸弦.已知點(diǎn)P(
x,y)、M(m,n)是圓錐曲線(xiàn)C上不與頂點(diǎn)重合的任意兩點(diǎn),MN是垂直于x軸的一條垂軸弦,直線(xiàn)MP,NP分別交x軸于點(diǎn)E(xE,0)和點(diǎn)F(xF,0).
(Ⅰ)試用x,y,m,n的代數(shù)式分別表示xE和xF;
(Ⅱ)已知“若點(diǎn)P(x,y)是圓C:x2+y2=R2上的任意一點(diǎn),MN是垂直于x軸的垂軸弦,直線(xiàn)MP、NP分別交x軸于點(diǎn)E(xE,0)和點(diǎn)F(xF,0),則”.類(lèi)比這一結(jié)論,我們猜想:“若曲線(xiàn)C的方程為(如圖),則xE•xF也是與點(diǎn)M、N、P位置無(wú)關(guān)的定值”,請(qǐng)你對(duì)該猜想給出證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案