已知命題p:關(guān)于x的函數(shù)y=x2-3ax+4在[1,+∞)上是增函數(shù),命題q:y=(2a-1)x為減函數(shù),若p且q為真命題,則a的取值范圍是( )
A.
B.
C.
D.
【答案】分析:由p且q為真命題,故p和q均為真命題,我們可根據(jù)函數(shù)的性質(zhì),分別計(jì)算出p為真命題時(shí),參數(shù)a的取值范圍及分別計(jì)算出q為真命題時(shí),參數(shù)a的取值范圍,求其交集即可.
解答:解:命題p等價(jià)于,3a≤2,即
由y=(2a-1)x為減函數(shù)得:0<2a-1<1即
又因?yàn)閜且q為真命題,所以,p和q均為真命題,
所以取交集得
故選C.
點(diǎn)評:(1)由簡單命題和邏輯連接詞構(gòu)成的復(fù)合命題的真假可以用真值表來判斷,反之根據(jù)復(fù)合命題的真假也可以判斷簡單命題的真假.假若p且q真,則p 真,q也真;若p或q真,則p,q至少有一個(gè)真;若p且q假,則p,q至少有一個(gè)假.(2)可把“p或q”為真命題轉(zhuǎn)化為并集的運(yùn)算;把“p且q”為真命題轉(zhuǎn)化為交集的運(yùn)算.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知命題P:關(guān)于x的不等式x2+(a-1)x+1≤0的解集為∅,命題q:方程
x2
2
+
y2
a
=1表示焦點(diǎn)在y軸上的橢圓,若命題¬q為真命題,p∨q為真命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:關(guān)于x的方程x2-ax+4=0有實(shí)根,命題q:關(guān)于x函數(shù)y=2x2+ax+4在[3,+∞)上為增函數(shù),若“p或q”為真命題,“p且q”為假命題,則實(shí)數(shù)a取值范圍為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:關(guān)于x的不等式x2-2x-a>0解集為R;命題q:曲線y=x2+(2a-3)x+1與x軸交于不同的兩點(diǎn).如果“p且q”為假命題,“p或q”為真命題,則實(shí)數(shù)a的取值范圍為
[-1,1)∪(
5
2
,+∞)
[-1,1)∪(
5
2
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:“關(guān)于x的方程x2-ax+a=0無實(shí)根”和命題q:“函數(shù)f(x)=x2-ax+a在區(qū)間[-1,+∞)上單調(diào).如果命題p∨q是假命題,那么,實(shí)數(shù)a的取值范圍是(  )
A、(0,4)B、(-∞,2]∪(0,4)C、(-2,0]∪[4,+∞)D、[-2,0)∪(4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:關(guān)于x的方程x2-2x+a=0有實(shí)根,命題q:函數(shù)f(x)=(a+1)x+2是減函數(shù),若p∨q是真命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案